Explore la modélisation générative basée sur les scores au moyen d'équations différentielles stochastiques, en mettant l'accent sur les modèles probabilistes d'appariement des scores et de diffusion.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Couvre la dynamique Langevin, l'équation Fokker-Planck, la résolution de l'équation Langevin, et l'efficacité de l'échantillonnage Langevin dans la dynamique moléculaire.
Explore les méthodes avancées d'intégrale de chemin dans la science informatique, couvrant l'échantillonnage efficace, le bruit coloré, les intégrales de haut ordre, et les thermostats quantiques.
Explore les équations différentielles linéaires, y compris les équations linéaires homogènes d'ordre supérieur et les équations à coefficients constants.