Test du multiplicateur de LagrangeLe test du multiplicateur de Lagrange (LM) ou test de score ou test de Rao est un principe général pour tester des hypothèses sur les paramètres dans un cadre de vraisemblance. L'hypothèse sous le test est exprimée comme une ou plusieurs contraintes sur les valeurs des paramètres. La statistique du test LM ne nécessite une maximisation que dans cet espace contraint des paramètres (en particulier si l'hypothèse à tester est de la forme alors ).
Maximum spacing estimationIn statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.
Identification (statistiques)En statistiques et en économétrie, l'identification (ou identifiabilité) est une propriété d'un modèle statistique. En statistiques, on dit qu'un modèle est identifiable s'il est possible d'apprendre la vraie valeur des paramètres à partir d'un nombre infini d'observations. On considère le modèle statistique : avec : l'espace de réalisation des variables aléatoires l'espace des valeurs possibles pour le paramètre une loi de probabilité de densité On définit alors la fonction de vraisemblance comme : On dit
Test exact de FisherEn statistique, le test exact de Fisher est un test statistique exact utilisé pour l'analyse des tables de contingence. Ce test est utilisé en général avec de faibles effectifs mais il est valide pour toutes les tailles d'échantillons. Il doit son nom à son inventeur, Ronald Fisher. C'est un test qualifié d'exact car les probabilités peuvent être calculées exactement plutôt qu'en s'appuyant sur une approximation qui ne devient correcte qu'asymptotiquement comme pour le test du utilisé dans les tables de contingence.
Scoring algorithmScoring algorithm, also known as Fisher's scoring, is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher. Let be random variables, independent and identically distributed with twice differentiable p.d.f. , and we wish to calculate the maximum likelihood estimator (M.L.E.) of . First, suppose we have a starting point for our algorithm , and consider a Taylor expansion of the score function, , about : where is the observed information matrix at .
Confidence regionIn statistics, a confidence region is a multi-dimensional generalization of a confidence interval. It is a set of points in an n-dimensional space, often represented as an ellipsoid around a point which is an estimated solution to a problem, although other shapes can occur. Confidence interval#Meaning and interpretation The confidence region is calculated in such a way that if a set of measurements were repeated many times and a confidence region calculated in the same way on each set of measurements, then a certain percentage of the time (e.
Moindres carrés non linéairesLes moindres carrés non linéaires est une forme des moindres carrés adaptée pour l'estimation d'un modèle non linéaire en n paramètres à partir de m observations (m > n). Une façon d'estimer ce genre de problème est de considérer des itérations successives se basant sur une version linéarisée du modèle initial. Méthode des moindres carrés Considérons un jeu de m couples d'observations, (x, y), (x, y),...,(x, y), et une fonction de régression du type y = f (x, β).
Test de WaldLe test de Wald est un test paramétrique économétrique dont l'appellation vient du mathématicien américain d'origine hongroise Abraham Wald (-) avec une grande variété d'utilisations. Chaque fois que nous avons une relation au sein des ou entre les éléments de données qui peuvent être exprimées comme un modèle statistique avec des paramètres à estimer, et tout cela à partir d'un échantillon, le test de Wald peut être utilisé pour « tester la vraie valeur du paramètre » basé sur l'estimation de l'échantillon.
Invariant estimatorIn statistics, the concept of being an invariant estimator is a criterion that can be used to compare the properties of different estimators for the same quantity. It is a way of formalising the idea that an estimator should have certain intuitively appealing qualities. Strictly speaking, "invariant" would mean that the estimates themselves are unchanged when both the measurements and the parameters are transformed in a compatible way, but the meaning has been extended to allow the estimates to change in appropriate ways with such transformations.
Ordered probitIn statistics, ordered probit is a generalization of the widely used probit analysis to the case of more than two outcomes of an ordinal dependent variable (a dependent variable for which the potential values have a natural ordering, as in poor, fair, good, excellent). Similarly, the widely used logit method also has a counterpart ordered logit. Ordered probit, like ordered logit, is a particular method of ordinal regression. For example, in clinical research, the effect a drug may have on a patient may be modeled with ordered probit regression.