Corrélation (statistiques)En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.
Minimum-variance unbiased estimatorIn statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter. For practical statistics problems, it is important to determine the MVUE if one exists, since less-than-optimal procedures would naturally be avoided, other things being equal. This has led to substantial development of statistical theory related to the problem of optimal estimation.
Loi uniforme discrèteEn théorie des probabilités, une loi discrète uniforme est une loi de probabilité discrète pour laquelle la probabilité de réalisation est identique (équiprobabilité) pour chaque modalité d’un ensemble fini de modalités possibles. C'est le cas par exemple de la loi de la variable aléatoire donnant le résultat du lancer d'une pièce équilibrée, avec deux modalités équiprobables : Pile, et Face. C'est aussi le cas de celle donnant le résultat du jet d'un dé équilibré.
Réseau bayésienEn informatique et en statistique, un réseau bayésien est un modèle graphique probabiliste représentant un ensemble de variables aléatoires sous la forme d'un graphe orienté acyclique. Intuitivement, un réseau bayésien est à la fois : un modèle de représentation des connaissances ; une « machine à calculer » des probabilités conditionnelles une base pour des systèmes d'aide à la décision Pour un domaine donné (par exemple médical), on décrit les relations causales entre variables d'intérêt par un graphe.
Loi GammaEn théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ2 et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité.
Loi uniforme continueEn théorie des probabilités et en statistiques, les lois uniformes continues forment une famille de lois de probabilité à densité. Une telle loi est caractérisée par la propriété suivante : tous les intervalles de même longueur inclus dans le support de la loi ont la même probabilité. Cela se traduit par le fait que la densité de probabilité d'une loi uniforme continue est constante sur son support. Elles constituent donc une généralisation de la notion d'équiprobabilité dans le cas continu pour des variables aléatoires à densité ; le cas discret étant couvert par les lois uniformes discrètes.
Épreuve de Bernoullivignette|Le pile ou face est un exemple d'épreuve de Bernouilli. En probabilité, une épreuve de Bernoulli de paramètre p (réel compris entre 0 et 1) est une expérience aléatoire (c'est-à-dire soumise au hasard) comportant deux issues, le succès ou l'échec. L'exemple typique est le lancer d'une pièce de monnaie possiblement pipée. On note alors p la probabilité d'obtenir pile (qui correspond disons à un succès) et 1-p d'obtenir face. Le réel p représente la probabilité d'un succès.
Analyse discriminante linéaireEn statistique, l’analyse discriminante linéaire ou ADL (en anglais, linear discriminant analysis ou LDA) fait partie des techniques d’analyse discriminante prédictive. Il s’agit d’expliquer et de prédire l’appartenance d’un individu à une classe (groupe) prédéfinie à partir de ses caractéristiques mesurées à l’aide de variables prédictives. Dans l’exemple de l'article Analyse discriminante, le fichier Flea Beetles, l’objectif est de déterminer l’appartenance de puces à telle ou telle espèce à partir de la largeur et de l’angle de son édéage (partie des organes génitaux mâles de l'insecte.
Frequentist inferenceFrequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or proportion of findings in the data. Frequentist-inference underlies frequentist statistics, in which the well-established methodologies of statistical hypothesis testing and confidence intervals are founded. The primary formulation of frequentism stems from the presumption that statistics could be perceived to have been a probabilistic frequency.
Sampling distributionIn statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic. If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling distribution is the probability distribution of the values that the statistic takes on.