Kurt GödelKurt Gödel, né le à Brünn et mort le à Princeton (New Jersey), est un logicien et mathématicien autrichien naturalisé américain. Son résultat le plus connu, le théorème d'incomplétude de Gödel, affirme que n'importe quel système logique suffisamment puissant pour décrire l'arithmétique des entiers admet des propositions sur les nombres entiers ne pouvant être ni infirmées ni confirmées à partir des axiomes de la théorie. Ces propositions sont qualifiées d'indécidables.
Dernier théorème de FermatEn mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Énoncé par Pierre de Fermat d'une manière similaire dans une note marginale de son exemplaire d'un livre de Diophante, il a cependant attendu plus de trois siècles une preuve publiée et validée, établie par le mathématicien britannique Andrew Wiles en 1994.
Société occidentaleLa société occidentale est le milieu humain qui résulte de l'Histoire, des institutions, des organisations, des normes, des lois, des mœurs, des coutumes et des valeurs propres à l'Occident. Entre les , la colonisation, puis l'impérialisme et l'hégémonie économique des pays occidentaux a permis la diffusion de plusieurs aspects du mode de vie occidental sur l'ensemble des continents, ce phénomène est appelé l'occidentalisation.
Révolution scientifiquevignette|Fresque représentant Galilée et le Doge de Venise, Giuseppe Bertini, 1858 La révolution scientifique est généralement considérée comme une discontinuité de la pensée scientifique à une époque donnée, cette rupture amenant un champ disciplinaire — ou plusieurs — à se réorganiser autour de principes et axiomes nouveaux. La notion de « révolution scientifique », portée notamment par Alexandre Koyré (1892, Taganrog - 1964, Paris), Herbert Butterfield (1900, Yorkshire - 1979, Sawston) et Thomas Kuhn (1922, Cincinnati - 1996 Cambridge, Massachusetts), a fait l'objet d'un certain nombre de critiques, car elle implique une rupture totale avec les savoirs anciens.
Mathématiques dans l'Égypte antiqueLes mathématiques en Égypte antique étaient fondées sur un système décimal. Chaque puissance de dix était représentée par un hiéroglyphe particulier. Le zéro était inconnu. Toutes les opérations étaient ramenées à des additions. Pour exprimer des valeurs inférieures à leur étalon, les Égyptiens utilisaient un système simple de fractions unitaires. Pour déterminer la longueur d'un champ, sa surface ou encore mesurer un butin, les Égyptiens utilisaient trois systèmes de mesure différents, mais tous obéissaient aux règles décrites ci-dessus.
Nicolas BourbakiNicolas Bourbaki est un mathématicien imaginaire, sous le nom duquel un groupe de mathématiciens francophones, formé en 1935 à Besse (aujourd'hui Besse-et-Saint-Anastaise) en Auvergne sous l'impulsion d'André Weil, a commencé à écrire et à éditer des textes mathématiques à la fin des . L'objectif premier était la rédaction d'un traité d'analyse. Le groupe s'est constitué en association, lAssociation des collaborateurs de Nicolas Bourbaki, le . Sa composition a évolué avec un renouvellement constant de générations.
Système de numération indo-arabevignette|upright=1.5|Généalogie des numérations brahmi, gwalior, sanskrit-dévanagari et arabes (1935). Le système de numération indo-arabe est un système de numération de base dix employant une notation positionnelle et dix chiffres, allant de zéro à neuf, dont le tracé est indépendant de la valeur représentée. Dans ce système, la représentation d'un nombre correspond à son développement décimal. Le système doit son nom au fait qu'il est apparu en Inde et qu'il est parvenu en Europe par l'intermédiaire des Arabes.
Alfred North WhiteheadAlfred North Whitehead, né le à Ramsgate (dans le Kent, en Angleterre) et mort le à Cambridge (Massachusetts), est un philosophe, logicien et mathématicien britannique. Il est le fondateur de l'école philosophique connue sous le nom de la philosophie du processus, un courant influent dans toute une série de disciplines : l'écologie, la théologie, l'éducation, la physique, la biologie, l'économie et la psychologie. Au début de sa carrière, Whitehead écrit principalement sur les mathématiques, la logique et la physique.
Approximation de πvignette|upright=2|Graphique montrant l'évolution historique de la précision record des approximations numériques de π, mesurée en décimales (représentée sur une échelle logarithmique). Dans l'histoire des mathématiques, les approximations de la constante π ont atteint une précision de 0,04 % de la valeur réelle avant le début de notre ère (Archimède). Au , des mathématiciens chinois les ont améliorées jusqu'à sept décimales. De grandes avancées supplémentaires n'ont été réalisées qu'à partir du (Al-Kashi).
Abrégé du calcul par la restauration et la comparaisonL'Abrégé du calcul par la restauration et la comparaison (en arabe : 'الكتاب المختصر في حساب الجبر والمقابلة, Kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala) est un livre historique de mathématiques écrit en arabe entre 813 et 833 par le mathématicien perse Al-Khawarizmi. Dans cet ouvrage, Al-Khawarizmi pose les fondations de l'algèbre en étant le premier à étudier systématiquement la résolution des équations du premier et du second degré. Les successeurs d'Al-Khwarizmi ont perpétué et amplifié son œuvre dans d'autres ouvrages qui portaient souvent le même titre.