Liste de théorèmes du point fixeEn analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe.
Opérateur de transfertEn mathématiques, l'opérateur de transfert encode l'information d'une application itérée et est fréquemment utilisé pour étudier le comportement des systèmes dynamiques, de la mécanique statistique, du chaos quantique et des fractales. L'opérateur de transfert est quelquefois appelé l'opérateur de Ruelle, en l'honneur de David Ruelle, ou l'opérateur de Ruelle-Perron-Frobenius faisant référence à l'applicabilité du théorème de Perron-Frobenius pour la détermination des valeurs propres de l'opérateur.
Décalage de Bernoulli (mathématiques)Le décalage de Bernoulli (également connu comme fonction dyadique ou fonction 2x mod 1) est l'application produite par la règle De façon équivalente, le décalage de Bernoulli peut également être défini comme la fonction itérée de la fonction affine par parties Le décalage de Bernoulli fournit un exemple de la manière dont une simple fonction unidimensionnelle peut mener au chaos. Si x0 est rationnel, l'image de x0 contient un nombre fini de valeurs différentes dans [0 ; 1] et l'orbite positive de x0 est périodique à partir d'un certain point, avec la même période que le développement binaire de x0.
Suite logistiqueEn mathématiques, une suite logistique est une suite réelle simple, mais dont la récurrence n'est pas linéaire. Sa relation de récurrence est Suivant la valeur du paramètre μ (dans [0; 4] pour assurer que les valeurs de x restent dans [0; 1]), elle engendre soit une suite convergente, soit une suite soumise à oscillations, soit une suite chaotique. Souvent citée comme exemple de la complexité de comportement pouvant surgir d'une relation non linéaire simple, cette suite fut popularisée par le biologiste Robert May en 1976.
Orbit (dynamics)In mathematics, specifically in the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. It can be understood as the subset of phase space covered by the trajectory of the dynamical system under a particular set of initial conditions, as the system evolves. As a phase space trajectory is uniquely determined for any given set of phase space coordinates, it is not possible for different orbits to intersect in phase space, therefore the set of all orbits of a dynamical system is a partition of the phase space.
Banach fixed-point theoremIn mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach-Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces, and provides a constructive method to find those fixed points. It can be understood as an abstract formulation of Picard's method of successive approximations. The theorem is named after Stefan Banach (1892–1945) who first stated it in 1922.
Point périodiquevignette|Diagramme explicatif du point périodique de période 4 du système dynamique discret f En mathématiques, un point périodique pour une fonction est un point fixe pour l’une des fonctions itérées. La période de ce point est alors la période de la suite récurrente associée. De tels points périodiques apparaissent facilement avec une suite logistique lorsque le paramètre μ dépasse la valeur 3. Le théorème de Charkovski donne un ordre sur les périodes pouvant apparaitre dans les suites récurrentes réelles simples associée à une fonction donnée.
Système de fonctions itéréesvignette|Attracteur de deux similitudes et . En mathématiques, un système de fonctions itérées (SFI ou encore IFS, acronyme du terme anglais Iterated Function System) est un outil pour construire des fractales. Plus précisément, l'attracteur d'un système de fonctions itérées est une forme fractale autosimilaire faite de la réunion de copies d'elle-même, chaque copie étant obtenue en transformant l'une d'elles par une fonction du système. La théorie a été formulée lors d'un séjour à l'université de Princeton par John Hutchinson en 1980.
Équation de SchröderL'équation de Schröder est une équation fonctionnelle à une variable, Elle porte le nom du mathématicien Ernst Schröder. L'équation de Schröder est l'équation de la valeur propre de l'opérateur de composition Ch qui associe une fonction f à la fonction composée f • h. Elle joue un rôle fondamental dans le domaine des équations fonctionnelles : c'est une simple équation linéaire et ses solutions servent souvent dans la construction de solutions à des équations plus compliquées .
Periodic points of complex quadratic mappingsThis article describes periodic points of some complex quadratic maps. A map is a formula for computing a value of a variable based on its own previous value or values; a quadratic map is one that involves the previous value raised to the powers one and two; and a complex map is one in which the variable and the parameters are complex numbers. A periodic point of a map is a value of the variable that occurs repeatedly after intervals of a fixed length. These periodic points play a role in the theories of Fatou and Julia sets.