Robust measures of scaleIn statistics, robust measures of scale are methods that quantify the statistical dispersion in a sample of numerical data while resisting outliers. The most common such robust statistics are the interquartile range (IQR) and the median absolute deviation (MAD). These are contrasted with conventional or non-robust measures of scale, such as sample standard deviation, which are greatly influenced by outliers.
AverageIn ordinary language, an average is a single number taken as representative of a list of numbers, usually the sum of the numbers divided by how many numbers are in the list (the arithmetic mean). For example, the average of the numbers 2, 3, 4, 7, and 9 (summing to 25) is 5. Depending on the context, an average might be another statistic such as the median, or mode. For example, the average personal income is often given as the median—the number below which are 50% of personal incomes and above which are 50% of personal incomes—because the mean would be higher by including personal incomes from a few billionaires.
MidhingeIn statistics, the midhinge is the average of the first and third quartiles and is thus a measure of location. Equivalently, it is the 25% trimmed mid-range or 25% midsummary; it is an L-estimator. The midhinge is related to the interquartile range (IQR), the difference of the third and first quartiles (i.e. ), which is a measure of statistical dispersion. The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles.
Quantilevignette|Densité de probabilité d'une loi normale de moyenne μ et d'écart-type σ. On montre ici les trois quartiles Q1, Q2, Q3. L'aire sous la courbe rouge est la même dans les intervalles (−∞,Q1), (Q1,Q2), (Q2,Q3), et (Q3,+∞). La probabilité d'être dans chacun de ces intervalles est de 25%. En statistiques et en théorie des probabilités, les quantiles sont les valeurs qui divisent un jeu de données en intervalles de même probabilité égale. Il y a donc un quantile de moins que le nombre de groupes créés.
Indicateur de tendance centralevignette|Diagramme d'une loi binomiale avec des indicateurs de tendance centrale (comme la moyenne au centre). En statistique, un indicateur de tendance centrale est une valeur résumant une série statistique pour une variable quantitative ou ordinale. Les deux principaux sont la moyenne et la médiane, mais on trouve parfois aussi la valeur centrale (moyenne des valeurs minimale et maximale) ou le mode. Ce dernier n’étant pas nécessairement unique pour une série statistique, sa définition ne s’obtient pas directement comme une fonction des termes de la série.
Écart typethumb|Exemple de deux échantillons ayant la même moyenne (100) mais des écarts types différents illustrant l'écart type comme mesure de la dispersion autour de la moyenne. La population rouge a un écart type (SD = standard deviation) de 10 et la population bleue a un écart type de 50. En mathématiques, l’écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité.
Boîte à moustachesDans les représentations graphiques de données statistiques, la boîte à moustaches, aussi appelée diagramme en boîte, boîtes à pattes, boîte de Tukey (en anglais, box-and-whisker plot, plus simplement box plot) est un moyen rapide de figurer le profil essentiel d'une série statistique quantitative. Elle a été inventée en 1977 par John Tukey, mais peut faire l'objet de certains aménagements selon les utilisateurs. La boîte à moustaches résume seulement quelques indicateurs de position du caractère étudié (médiane, quartiles, minimum, maximum ou déciles).
Trimmed estimatorIn statistics, a trimmed estimator is an estimator derived from another estimator by excluding some of the extreme values, a process called truncation. This is generally done to obtain a more robust statistic, and the extreme values are considered outliers. Trimmed estimators also often have higher efficiency for mixture distributions and heavy-tailed distributions than the corresponding untrimmed estimator, at the cost of lower efficiency for other distributions, such as the normal distribution.
Range (statistics)In statistics, the range of a set of data is the difference between the largest and smallest values, the result of subtracting the sample maximum and minimum. It is expressed in the same units as the data. In descriptive statistics, range is the size of the smallest interval which contains all the data and provides an indication of statistical dispersion. Since it only depends on two of the observations, it is most useful in representing the dispersion of small data sets.
Centilethumb|Définition du 95e centile d'une loi de Fisher-Snedecor En statistique descriptive, un centile (ou percentile) est une des 99 valeurs qui divisent une distribution de données en 100 parts égales de sorte que le p-ième centile soit la valeur supérieure à p % des autres valeurs. Les centiles sont un cas particulier des quantiles. Voir l'article "quantile" pour les méthodes. Un centile est calculé en tant que 100-quantile.