Explore les dangers des « grands » modèles, des questions de multicollinéarité et de l'analyse de l'ajustement des modèles dans les statistiques pour la science des données.
Explore la construction de modèles dans la régression linéaire, couvrant des techniques comme la régression par étapes et la régression par crête pour traiter la multicolinéarité.
Explore la sélection des modèles dans la régression des moindres carrés, en abordant les défis de multicollinéarité et en introduisant des techniques de rétrécissement.
Explore le modèle de régression linéaire, les propriétés de l'OLS, les tests d'hypothèse, l'interprétation, les transformations et les considérations pratiques.
Explore les concepts avancés dans les modèles de régression linéaire, y compris la multicolinéarité, les tests d'hypothèses et les valeurs aberrantes de manipulation.