Le théorème de Bézout, attribué à Étienne Bézout, affirme que deux courbes algébriques projectives planes de degrés m et n, définies sur un corps algébriquement clos et sans composante irréductible commune, ont exactement mn points d'intersection, comptés avec leur multiplicité. La forme faible du théorème dit que le nombre d'intersections (sans tenir compte des multiplicités) est majoré par . Autrement dit, si sont deux polynômes homogènes à coefficients dans (avec et ) de degrés respectifs et sans facteur commun, alors le système admet au plus solutions dans le plan projectif . Dans la géométrie de Descartes, le calcul de la tangente d'une courbe ou, ce qui revient au même, de la droite normale en un point, se fait par la recherche du cercle osculateur en ce point. La méthode décrite par Descartes consiste à écrire l'équation des cercles passant par le point de la courbe et à chercher celui des cercles qui n'a qu'un point d'intersection unique avec la courbe. Dès le début du , la recherche du nombre de points d'intersection de deux courbes planes d'équations cartésiennes implicites , où P, Q sont deux polynômes de degré respectifs m, n se fait par la méthode d'élimination d'une des deux variables. Dès 1720, Maclaurin conjecture qu’. Léonard Euler examine la question sur quelques cas particuliers mais ne parvient pas à faire rentrer le cas des racines multiples dans une démonstration générale. Étienne Bézout est le premier à démontrer (1764) l'énoncé dans le cas où il n'y a que des racines simples. Soient deux polynômes dans , non-constants et sans facteur irréductible commun. Alors l'ensemble de leurs zéros communs dans est fini. Fixons un zéro commun , et considérons l'anneau local , constitué des fractions rationnelles dont le dénominateur ne s'annule pas en P, et son quotient par l'idéal engendré par . Ce dernier est un -espace vectoriel de dimension finie, sa dimension est appelée la multiplicité d'intersection des courbes en . Exemple : Si sont non-singulières, alors leur multiplicité d'intersection en (a, b) est 1 si et seulement si leurs tangentes en sont distinctes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-328: Algebraic geometry I - Curves
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
CIVIL-122: Structures I
Le cours présente les bases du comportement des structures, de la détermination des efforts qui y agissent et les principes de leur dimensionnement. Le cours est basé sur la résolution des efforts par
Concepts associés (21)
Courbe algébrique
En mathématiques, et plus précisément en géométrie algébrique, une courbe algébrique est une variété algébrique (ou un schéma de type fini) sur un corps, dont les composantes irréductibles sont de dimension 1. Cette définition est la généralisation moderne de celle des courbes algébriques classiques, telles que les coniques, définies, dans le cas des courbes planes, comme l'ensemble des points solutions d'une équation polynomiale. Sous sa forme la plus générale, une courbe algébrique sur un corps est une variété algébrique de dimension 1 sur , séparée pour éviter des pathologies.
Variété projective
En géométrie algébrique, les variétés projectives forment une classe importante de variétés. Elles vérifient des propriétés de compacité et des propriétés de finitude. C'est l'objet central de la géométrie algébrique globale. Sur un corps algébriquement clos, les points d'une variété projective sont les points d'un ensemble algébrique projectif. On fixe un corps (commutatif) k. Algèbre homogène. Soit B le quotient de par un idéal homogène ( idéal engendré par des polynômes homogènes).
Conique
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.