Groupe de Poincaré (transformations)Le groupe de Poincaré ou symétrie de Poincaré est l'ensemble des isométries de l'espace-temps de Minkowski. Il a la propriété d'être un groupe de Lie non compact à 10 dimensions. Sa version complète inclut quatre types de symétrie : les translations (c'est-à-dire les déplacements) dans le temps et l'espace, formant le groupe de Lie abélien des translations sur l'espace-temps ; les rotations dans l'espace, qui forment le groupe de Lie non abélien des rotations tridimensionnelles ; les transformations de Lorentz propres et orthochrones, laissant inchangés le sens du temps et l'orientation de l'espace ; le renversement du temps T et la parité P (renversement des coordonnées d'espace), qui forment un groupe discret (Id ; T ; P ; PT).
Matrice de DiracLes matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d'une équation d'onde relativiste de l'électron. Le pendant relativiste de l'équation de Schrödinger est l'équation de Klein-Gordon. Celle-ci décrit des particules de spin 0 et ne convient pas pour les électrons qui sont de spin 1/2. Dirac essaya alors de trouver une équation linéaire comme celle de Schrödinger sous la forme : où est une fonction d'onde vectorielle, la masse de la particule, l'hamiltonien, sont respectivement un vecteur de matrices hermitiques et une matrice hermitique, et i désigne l'unité imaginaire.
Équation de MajoranaL'équation de Majorana est une similaire à l'équation de Dirac mais inclut la charge conjuguée Ψc d'un spineur Ψ. Cette équation porte le nom de l'italien Ettore Majorana, et dans les unités naturelles, elle s'exprime par écrit avec la notation de Feynman, où la charge conjuguée est définie par L'équation (1) peut s'exprimer autrement par Si une particule a un spineur de fonction d'onde Ψ qui satisfait l'équation de Majorana, alors la grandeur m de l'équation est appelé la masse de Majorana.
Équation de DiracL'équation de Dirac est une équation formulée par Paul Dirac en 1928 dans le cadre de sa mécanique quantique relativiste de l'électron. Il s'agit au départ d'une tentative pour incorporer la relativité restreinte à des modèles quantiques, avec une écriture linéaire entre la masse et l'impulsion. Cette équation décrit le comportement de particules élémentaires de spins demi-entiers, comme les électrons. Dirac cherchait à transformer l'équation de Schrödinger afin de la rendre invariante par l'action du groupe de Lorentz, en d'autre termes à la rendre compatible avec les principes de la relativité restreinte.
Quark topLe quark top (en abrégé t) est un quark, une particule élémentaire de la physique des particules. vignette|300px|Diagramme de désintégration des quarks. Comme tous les quarks, le quark top est un fermion. Il s'agit d'un quark de possédant une charge électrique de +2/3 e. Il est le quark le plus massif avec une masse de (presque autant qu'un atome d'or). L'antiparticule du quark top est l'antiquark top, de charge électrique −2/3 e.
Groupe de LorentzLe groupe de Lorentz est le groupe mathématique constitué par l'ensemble des transformations de Lorentz de l'espace de Minkowski. Les formules mathématiques : des lois de la cinématique de la relativité restreinte ; des équations de champ de Maxwell dans la théorie de électromagnétisme ; de l'équation de Dirac dans la théorie de l'électron sont toutes invariantes sous les transformations de Lorentz. En conséquence, le groupe de Lorentz exprimerait la symétrie fondamentale de plusieurs lois de la nature.
C parityIn physics, the C parity or charge parity is a multiplicative quantum number of some particles that describes their behavior under the symmetry operation of charge conjugation. Charge conjugation changes the sign of all quantum charges (that is, additive quantum numbers), including the electrical charge, baryon number and lepton number, and the flavor charges strangeness, charm, bottomness, topness and Isospin (I3). In contrast, it doesn't affect the mass, linear momentum or spin of a particle.
Multiplicative quantum numberIn quantum field theory, multiplicative quantum numbers are conserved quantum numbers of a special kind. A given quantum number q is said to be additive if in a particle reaction the sum of the q-values of the interacting particles is the same before and after the reaction. Most conserved quantum numbers are additive in this sense; the electric charge is one example. A multiplicative quantum number q is one for which the corresponding product, rather than the sum, is preserved.
Asymétrie baryoniqueL'asymétrie baryonique réfère à l'excès de la matière baryonique sur l'antimatière baryonique dans l'univers observable. Bien que plusieurs hypothèses soient émises pour expliquer cet excès, dont la plupart concernent la baryogénèse, aucune d'elles ne fait consensus, et l'asymétrie baryonique demeure l'un des problèmes non résolus de la physique. La plupart des hypothèses formulées à propos de l'asymétrie baryonique impliquent la modification du modèle standard en physique des particules afin de permettre que certaines réactions (surtout celles impliquant l'interaction faible) puissent se réaliser plus facilement que leur contraire.
G-parityIn particle physics, G-parity is a multiplicative quantum number that results from the generalization of C-parity to multiplets of particles. C-parity applies only to neutral systems; in the pion triplet, only π0 has C-parity. On the other hand, strong interaction does not see electrical charge, so it cannot distinguish amongst π+, π0 and π−. We can generalize the C-parity so it applies to all charge states of a given multiplet: where ηG = ±1 are the eigenvalues of G-parity.