Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les aspects clés de la planification de l'entrepreneuriat, y compris les opérations, le financement et la croissance des équipes, en soulignant l'importance d'un plan d'affaires bien structuré.
Explore les fondamentaux de l'apprentissage automatique et les risques liés à la vie privée, en mettant l'accent sur les attaques contre la vie privée et l'apprentissage automatique collaboratif.
Couvre la conception, la mise en œuvre et la vérification formelle des systèmes distribués, en se concentrant sur les systèmes et organisations distribués vérifiables.
Plongez dans les défis et les avantages de l'apprentissage profond, en soulignant la transition vers les réseaux neuronaux convolutifs et l'impact de la largeur du réseau sur le paysage des pertes.
Explore l'importance des changements chimiques calculés dans la spectroscopie RMN et les défis de la prédiction des changements chimiques à l'aide de l'apprentissage automatique.
Explore l'ensachage en tant que méthode de régularisation dans l'apprentissage en profondeur, en formant plusieurs variantes de modèles sur différents sous-ensembles de données pour améliorer la généralisation.
Déplacez-vous dans les potentiels interatomiques de la machine appris, montrant leur précision et leur rentabilité dans la prédiction des propriétés chimiques.
Explique l'algorithme Adaboost pour construire des classificateurs forts à partir de faibles, en mettant l'accent sur l'amélioration des méthodes et la détection des visages.
Couvre les concepts de traitement de flux de données, en se concentrant sur l'intégration Apache Kafka et Spark Streaming, la gestion du temps des événements et les directives de mise en œuvre du projet.