Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la pensée contradictoire, les faiblesses communes et les défenses inefficaces dans les systèmes logiciels, en soulignant l'importance d'atténuer les vulnérabilités courantes.
Explore l'apprentissage par machine contradictoire, les réseaux d'adversaires génériques et les défis des exemples d'adversaires dans l'optimisation des données.
Explore les mesures d'évaluation des modèles, les techniques de sélection, le compromis biais-variance et la gestion des distributions de données biaisées dans l'apprentissage automatique.
Explore les techniques d'optimisation avancées pour les modèles d'apprentissage automatique, en se concentrant sur les méthodes de gradient adaptatifs et leurs applications dans les problèmes d'optimisation non convexe.
Explore le compromis entre la complexité et le risque dans les modèles d'apprentissage automatique, les avantages de la surparamétrisation et le biais implicite des algorithmes d'optimisation.