Groupe des quaternionsEn mathématiques et plus précisément en théorie des groupes, le groupe des quaternions est l'un des deux groupes non abéliens d'ordre 8. Il admet une représentation réelle irréductible de degré 4, et la sous-algèbre des matrices 4×4 engendrée par son image est un corps gauche qui s'identifie au corps des quaternions de Hamilton. Le groupe des quaternions est souvent désigné par le symbole Q ou Q8 et est écrit sous forme multiplicative, avec les 8 éléments suivants : Ici, 1 est l'élément neutre, et pour tout a dans Q.
Point groups in three dimensionsIn geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries. Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries.
Binary tetrahedral groupIn mathematics, the binary tetrahedral group, denoted 2T or , is a certain nonabelian group of order 24. It is an extension of the tetrahedral group T or (2,3,3) of order 12 by a cyclic group of order 2, and is the of the tetrahedral group under the 2:1 covering homomorphism Spin(3) → SO(3) of the special orthogonal group by the spin group. It follows that the binary tetrahedral group is a discrete subgroup of Spin(3) of order 24. The complex reflection group named 3(24)3 by G.C.
Binary cyclic groupIn mathematics, the binary cyclic group of the n-gon is the cyclic group of order 2n, , thought of as an extension of the cyclic group by a cyclic group of order 2. Coxeter writes the binary cyclic group with angle-brackets, ⟨n⟩, and the index 2 subgroup as (n) or [n]+. It is the binary polyhedral group corresponding to the cyclic group. In terms of binary polyhedral groups, the binary cyclic group is the preimage of the cyclic group of rotations () under the 2:1 covering homomorphism of the special orthogonal group by the spin group.
Graphe des cyclesEn mathématiques, et plus particulièrement en théorie des groupes, le graphe des cycles d'un groupe représente l'ensemble des cycles de ce groupe, ce qui est particulièrement utile pour visualiser la structure des petits groupes finis. Pour les groupes ayant moins de 16 éléments, le graphe des cycles détermine le groupe à isomorphisme près. Un cycle est l'ensemble des puissances d'un élément donné du groupe ; a, la n-ième puissance de l'élément a, est définie comme le produit de a par lui-même n fois (avec les conventions a = a et a = e, l'élément neutre du groupe).