Capacité thermique massiqueLa capacité thermique massique (symbole usuel c), anciennement appelée chaleur massique ou chaleur spécifique, est la capacité thermique d'un matériau rapportée à sa masse. C'est une grandeur qui reflète la capacité d'un matériau à accumuler de l'énergie sous forme thermique, pour une masse donnée, quand sa température augmente. Une grande capacité thermique signifie qu'une grande quantité d'énergie peut être stockée, moyennant une augmentation relativement faible de la température.
KelvinLe 'kelvin' (du nom de William Thomson, dit Lord Kelvin), de symbole K, est l'unité de base SI de température thermodynamique. Jusqu’au , le kelvin était défini comme la fraction 1/273,16 de la température thermodynamique du point triple de l'eau (), une variation de température d' étant équivalente à une variation d'. La nouvelle définition a pour objectif de respecter cette valeur, mais en l’ancrant sur une valeur fixée de la constante de Boltzmann.
Équation d'étatEn physique, et plus particulièrement en thermodynamique, une équation d'état d'un système à l'équilibre thermodynamique est une relation entre différents paramètres physiques (appelés variables d'état) qui déterminent son état. Il peut s'agir par exemple d'une relation entre sa température, sa pression et son volume. À partir de l'équation d'état caractéristique d'un système physique, il est possible de déterminer la totalité des quantités thermodynamiques décrivant ce système et par suite de prédire ses propriétés.
Molécule d'eauLa molécule d’eau, de formule , est le constituant essentiel de l’eau pure. Celle-ci contient également des ions résultant de l’autoprotolyse de l’eau selon l’équation d'équilibre : H + OH (ou 2 HO + OH). L’eau pure n’est pas présente dans la nature et doit être obtenue par des processus physiques. Cette molécule a des propriétés complexes à cause de sa polarisation (voir la section Nature dipolaire). L’eau à pression ambiante (environ un bar) est gazeuse au-dessus de , solide en dessous de et liquide entre les deux.
Polymère renforcé de fibres de carboneLe polymère renforcé de fibres de carbone, ou PRFC (en anglais Carbon Fiber Reinforced Polymer ou CFRP), est un matériau composite très résistant et léger. Son prix reste à l' assez élevé. De la même manière que le plastique à renfort fibre de verre est appelé plus simplement « fibre de verre », le CFRP prend la dénomination usuelle de « fibre de carbone ». La matrice généralement utilisée dans la fabrication du composite est une résine époxyde ; on peut aussi employer le polyester, le vinylester ou le polyamide.
Béton armévignette|Armatures métalliques de renforcement du béton. vignette|« Cancer du béton » : lorsque le front de carbonatation atteint l'armature métallique, celle-ci est atteinte de rouille qui fait augmenter le volume de l'acier, conduisant à l'éclatement du béton d'enrobage, ce qui provoque des délaminations, ou comme ici des épaufrures qui mettent à nu les armatures oxydées. Le béton armé est un matériau composite constitué de béton et de barres d'acier alliant les propriétés mécaniques complémentaires de ces matériaux (bonne résistance à la compression du béton et bonne résistance à la traction de l'acier).
Cristal (verre)vignette|Verre en cristal, gravé, à motif d'oiseau. Le cristal est un type de verre riche en plomb (contenant au moins 23 % d'oxyde de plomb en masse). Le plomb abaisse le point de fusion du verre, tout en stabilisant sa composition. Il le rend plus lumineux (effet « arc en ciel »), plus dense (typiquement 30% de surcroît par rapport au verre de silice, voire beaucoup plus pour des concentrations élevées de plomb) et lui confère une sonorité particulière. Par ailleurs, le cristal, plus que le verre, peut être plus facilement taillé.
Polypropylènevignette|110px|Code d'identification de la résine PP. Le polypropylène (ou polypropène) isotactique, de sigle PP (ou PPi) et de formule chimique (-CH2-CH(CH3)-)n, est un polymère thermoplastique semi-cristallin de grande consommation (bouteille, mobilier). Sa résistance exceptionnelle à la fatigue en fait un matériau de choix pour les pièces qui doivent être déformées (articulation entre un couvercle et une boite par exemple).
Loi des gaz parfaitsvignette|Isothermes d'un gaz parfait (diagramme (P,V,T)). La relation entre la pression P et le volume V est hyperbolique . En physique, et plus particulièrement en thermodynamique, la loi des gaz parfaits, ou équation des gaz parfaits, est l'équation d'état applicable aux gaz parfaits. Elle a été établie en 1834 par Émile Clapeyron par combinaison de plusieurs lois des gaz établies antérieurement. Cette équation s'écrit : avec : la pression (Pa) ; le volume du gaz (m3) ; la quantité de matière (mol) ; la constante universelle des gaz parfaits (≈ ) ; la température absolue (K).
Flottabilitévignette|Forces impliquées dans la flottabilité : l'objet flotte parce que la portance (dirigée vers le haut) équilibre le poids (dirigé vers le bas). Dans un fluide (gaz ou liquide), les corps sont soumis à la poussée d'Archimède. Les corps ont une flottabilité différente selon leur masse volumique et donc leur densité. La flottabilité est la poussée verticale, dirigée de bas en haut, qu'un fluide (gaz ou liquide) exerce sur un volume immergé. La flottabilité agit toujours dans la direction opposée à la gravité.