Outer productIn linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.
Algèbre géométrique (structure)Une algèbre géométrique est, en mathématiques, une structure algébrique, similaire à une algèbre de Clifford réelle, mais dotée d'une interprétation géométrique mise au point par David Hestenes, reprenant les travaux de Hermann Grassmann et William Kingdon Clifford (le terme est aussi utilisé dans un sens plus général pour décrire l'étude et l'application de ces algèbres : l'algèbre géométrique est l'étude des algèbres géométriques).
Algèbre extérieureEn mathématiques, et plus précisément en algèbre et en analyse vectorielle, l'algèbre extérieure d'un espace vectoriel E est une algèbre associative graduée, notée . La multiplication entre deux éléments a et b est appelée le produit extérieur et est notée . Le carré de tout élément de E est zéro (), on dit que la multiplication est alternée, ce qui entraîne que pour deux éléments de E : (la loi est « anti-commutative »). L'algèbre extérieure est aussi appelée algèbre de Grassmann nommée ainsi en l'honneur de Hermann Grassmann.
Vecteur de PoyntingEn physique, le vecteur de Poynting est la densité de flux liée à la propagation de l'onde électromagnétique. Sa direction est la direction de propagation. On le note , , ou . Le flux du vecteur de Poynting à travers une surface (fermée ou non) est égal à la puissance véhiculée par l'onde à travers cette surface. Le module de ce vecteur est donc une puissance par unité de surface, c'est-à-dire une densité de flux d'énergie ; il est homogène à un éclairement énergétique et à une exitance énergétique ; et, dans le Système international (SI) d'unités, il s'exprime en watts par mètre carré.
LinéaritéLe concept de linéarité est utilisé dans le domaine des mathématiques et dans le domaine de la physique, et par extension dans le langage courant. Les premiers exemples de situations où intervient la linéarité sont les situations de proportionnalité constante entre deux variables : le graphe représentant une variable en fonction de l'autre forme alors une ligne droite qui passe par l'origine. Il ne faut cependant pas confondre linéarité et proportionnalité, car la proportionnalité n'est qu'un cas particulier de la linéarité.
Analyse vectorielleL'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.
Produit scalaireEn mathématiques, et plus précisément en algèbre et en géométrie vectorielle, le produit scalaire est une opération algébrique s'ajoutant aux lois s'appliquant aux vecteurs. C'est une forme bilinéaire, symétrique, définie positive. À deux vecteurs, elle associe un scalaire, c'est-à-dire un nombre tel que ceux qui définissent cet espace vectoriel — réel pour un espace vectoriel réel. Si et sont deux vecteurs d'un espace vectoriel E sur le corps R des nombres réels, alors le produit scalaire de u par v est un scalaire (c'est-à-dire un élément de R), noté ∙ , , , ou .
Vitesse angulaireEn mécanique, la ou est une grandeur physique qui représente le taux de variation d'un angle par rapport au temps. C'est l'analogue de la vitesse de translation pour un mouvement de rotation. La vitesse angulaire est définie comme la dérivée par rapport au temps de la position angulaire de l'objet en rotation : Si on dérive une nouvelle fois la vitesse angulaire, on obtient l'accélération angulaire.
Hermann Günther GrassmannHermann Günther Grassmann (né le à Stettin et mort le dans la même ville) est un mathématicien et indianiste prussien. Polymathe, il est connu de ses contemporains en tant que linguiste. Physicien, néo-humaniste, érudit mais aussi éditeur, Hermann Grassmann est avec Niels Abel, Évariste Galois et Georg Cantor l’un des grands mathématiciens « malheureux » du . Selon le mot de Albert C. Lewis : Il est considéré aujourd'hui comme le fondateur du calcul tensoriel et de la théorie des espaces vectoriels.
Vecteur euclidienEn mathématiques, et plus précisément en géométrie euclidienne, un vecteur euclidien est un objet géométrique possédant une direction, un sens et une norme. On l'utilise par exemple en physique et en ingénierie pour modéliser une force. On parle aussi parfois de vecteur géométrique dans le plan euclidien (deux dimensions) et de vecteur spatial dans l'espace à trois dimensions. Vecteur#HistoireVecteur En physique et en ingénierie, on travaille souvent dans l'espace euclidien.