Résumé
En mathématiques, et plus particulièrement en analyse, la méthode des multiplicateurs de Lagrange permet de trouver les points stationnaires (maximum, minimum...) d'une fonction dérivable d'une ou plusieurs variables, sous contraintes. On cherche à trouver l'extremum, un minimum ou un maximum, d'une fonction φ de n variables à valeurs dans les nombres réels, ou encore d'un espace euclidien de dimension n, parmi les points respectant une contrainte, de type ψ(x) = 0 où ψ est une fonction du même ensemble de départ que φ. La fonction ψ est à valeurs dans un espace euclidien de dimension m. Elle peut encore être vue comme m fonctions à valeurs réelles, décrivant m contraintes. Si l'espace euclidien est de dimension 2 et si la fonction ψ est à valeurs dans R, correspondant à une contrainte mono-dimensionnelle, la situation s'illustre par une figure analogue à celle de droite. La question revient à rechercher le point situé le plus haut, c'est-à-dire le maximum de φ, dans l'ensemble des points rouges, c'est-à-dire ceux qui vérifient la contrainte. Le point recherché est celui où la courbe rouge ne monte ni ne descend. En termes techniques, cela correspond à un point où la différentielle de ψ possède un noyau orthogonal au gradient de φ en ce point. La méthode du multiplicateur de Lagrange offre une condition nécessaire. Les fonctions φ et ψ sont différentiables et leurs différentielles continues ; on parle de fonction de classe C. On considère λ un vecteur pris dans l'ensemble d'arrivée de ψ et la fonction L définie par : Cette fonction est parfois appelée le lagrangien. L'opérateur représenté par un point est ici le produit scalaire. Si x est une solution recherchée, on montre qu'il existe un vecteur λ tel que la fonction L admet une différentielle nulle au point (x, λ). Les coordonnées du vecteur λ — ou parfois du vecteur opposé — sont appelées multiplicateurs de Lagrange. Cette technique permet de passer d'une question d'optimisation sous contrainte à une optimisation sans contrainte, celle de la fonction L, dans un espace de dimension n + m.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.