En mathématiques, et plus particulièrement en analyse, la méthode des multiplicateurs de Lagrange permet de trouver les points stationnaires (maximum, minimum...) d'une fonction dérivable d'une ou plusieurs variables, sous contraintes. On cherche à trouver l'extremum, un minimum ou un maximum, d'une fonction φ de n variables à valeurs dans les nombres réels, ou encore d'un espace euclidien de dimension n, parmi les points respectant une contrainte, de type ψ(x) = 0 où ψ est une fonction du même ensemble de départ que φ. La fonction ψ est à valeurs dans un espace euclidien de dimension m. Elle peut encore être vue comme m fonctions à valeurs réelles, décrivant m contraintes. Si l'espace euclidien est de dimension 2 et si la fonction ψ est à valeurs dans R, correspondant à une contrainte mono-dimensionnelle, la situation s'illustre par une figure analogue à celle de droite. La question revient à rechercher le point situé le plus haut, c'est-à-dire le maximum de φ, dans l'ensemble des points rouges, c'est-à-dire ceux qui vérifient la contrainte. Le point recherché est celui où la courbe rouge ne monte ni ne descend. En termes techniques, cela correspond à un point où la différentielle de ψ possède un noyau orthogonal au gradient de φ en ce point. La méthode du multiplicateur de Lagrange offre une condition nécessaire. Les fonctions φ et ψ sont différentiables et leurs différentielles continues ; on parle de fonction de classe C. On considère λ un vecteur pris dans l'ensemble d'arrivée de ψ et la fonction L définie par : Cette fonction est parfois appelée le lagrangien. L'opérateur représenté par un point est ici le produit scalaire. Si x est une solution recherchée, on montre qu'il existe un vecteur λ tel que la fonction L admet une différentielle nulle au point (x, λ). Les coordonnées du vecteur λ — ou parfois du vecteur opposé — sont appelées multiplicateurs de Lagrange. Cette technique permet de passer d'une question d'optimisation sous contrainte à une optimisation sans contrainte, celle de la fonction L, dans un espace de dimension n + m.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.