Distance de HammingLa distance de Hamming est une notion mathématique, définie par Richard Hamming, et utilisée en informatique, en traitement du signal et dans les télécommunications. Elle joue un rôle important en théorie algébrique des codes correcteurs. Elle permet de quantifier la différence entre deux séquences de symboles. C'est une distance au sens mathématique du terme. À deux suites de symboles de même longueur, elle associe le nombre de positions où les deux suites diffèrent.
Calotte sphériquethumb|Une sphère et les deux calottes sphériques découpées par un plan En géométrie, une calotte sphérique est une portion de sphère délimitée par un plan. C'est un cas particulier de zone sphérique. Lorsque le plan passe par le centre de la sphère, on obtient un hémisphère. Cette surface de révolution sert de délimitant à deux types de solides : le secteur sphérique, portion de boule découpée par un cône le segment sphérique à une base, portion de boule découpée par un plan.
Calcul du volume de l'hypersphèreLa démonstration mathématique suivante pour le calcul du volume de l'hypersphère dépend des définitions précises de la sphère et de la boule. Le volume intérieur d'une sphère est le volume de la boule délimitée par la sphère. Nous intégrerons en coordonnées cartésiennes orthonormales dans l'espace euclidien. Notons le volume de la boule de rayon r en dimension n ≥ 1. Alors : parce que c'est la longueur d'un segment deux fois plus long que le rayon, i.e. La sphère de dimension 0 qui borde cette boule est constituée des deux points r et –r.
Segment sphériqueEn géométrie, un segment sphérique est le solide défini en coupant une boule avec une paire de plans parallèles. La surface du segment sphérique à l'exclusion des bases est appelée zone sphérique. Le segment sphérique est donc la partie de l’espace limitée par une zone sphérique et deux disques. Si le rayon de la sphère est appelé R, les rayons des bases des segments sphériques sont r1 et r2 et la hauteur du segment sphérique (la distance d'un plan parallèle à l'autre) appelée h, alors le volume du segment sphérique est : Lorsqu'un des plans est tangent à la sphère, on parle de segment sphérique à une base.
Onglet sphériqueEn géométrie, un onglet sphérique est le solide découpé dans un boule par deux demi-plans ayant pour frontière le même diamètre. Plus précisément, ces demi-plans découpent dans la boule deux onglets sphériques, un, plus petit qu'un hémisphère, est l'onglet mineur, l'autre est l'onglet majeur. Un onglet sphérique est une portion de boule interceptée par un dièdre dont l'arête passe par le centre de la sphère. Son angle dièdre α et le rayon r de la sphère sont les deux dimensions caractérisant un onglet sphérique.
Euclidean topologyIn mathematics, and especially general topology, the Euclidean topology is the natural topology induced on -dimensional Euclidean space by the Euclidean metric. The Euclidean norm on is the non-negative function defined by Like all norms, it induces a canonical metric defined by The metric induced by the Euclidean norm is called the Euclidean metric or the Euclidean distance and the distance between points and is In any metric space, the open balls form a base for a topology on that space.
Distance de TchebychevLa distance de Tchebychev, distance de Chebyshev ou ∞-distance, est la distance entre deux points donnée par la différence maximale entre leurs coordonnées sur une dimension. La distance de Tchebychev tient son nom du mathématicien russe Pafnouti Tchebychev. Entre deux points A et B, de coordonnées respectives et , la distance de Tchebychev est définie par : Autrement dit : c'est la distance associée à la norme « infini ». La distance de Tchebychev est équivalente à la d'ordre infini.
Secteur sphériqueEn géométrie, un secteur sphérique est une portion de sphère - plus exactement de boule - délimitée par un demi-cône de révolution dont le sommet coïncide avec le centre de la sphère. C'est un solide de révolution dont la frontière est constituée d'une portion de cône et d'une calotte sphérique. Plus précisément, le demi-cône découpe dans la boule deux solides, l'un, convexe, dont le volume est inférieur à une demi-boule est appelé secteur mineur, l'autre est appelé secteur majeur.