Concepts associés (28)
N-sphère
En géométrie, la sphère de dimension n, l'hypersphère ou n-sphère est une généralisation de la sphère à un espace euclidien de dimension quelconque. L'hypersphère constitue un des exemples les plus simples de variété, elle est plus précisément une hypersurface de l'espace euclidien , notée en général . Soient E un espace euclidien de dimension n + 1, A un point de E, et R un nombre réel strictement positif. On appelle hypersphère de centre A et de rayon R l'ensemble des points M dont la distance à A vaut R.
Voisinage (mathématiques)
En mathématiques, dans un espace topologique, un voisinage d'un point est une partie de l'espace qui contient un ouvert qui comprend ce point. C'est une notion centrale dans la description d'un espace topologique. Par opposition aux voisinages, les ensembles ouverts permettent de définir élégamment des propriétés globales comme la continuité en tout point. En revanche, pour les propriétés locales comme la continuité en un point donné ou la limite, la notion de voisinage (et le formalisme correspondant) est plus adaptée.
Norme (mathématiques)
En géométrie, la norme est une extension de la valeur absolue des nombres aux vecteurs. Elle permet de mesurer la longueur commune à toutes les représentations d'un vecteur dans un espace affine, mais définit aussi une distance entre deux vecteurs invariante par translation et compatible avec la multiplication externe. La norme usuelle dans le plan ou l'espace est dite euclidienne car elle est associée à un produit scalaire, à la base de la géométrie euclidienne.
Espace métrique
En mathématiques et plus particulièrement en topologie, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. Les éléments seront, en général, appelés des points. Tout espace métrique est canoniquement muni d'une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette manière. L'exemple correspondant le plus à notre expérience intuitive de l'espace est l'espace euclidien à trois dimensions.
Homéomorphisme
En topologie, un homéomorphisme est une application bijective continue, d'un espace topologique dans un autre, dont la bijection réciproque est continue. Dans ce cas, les deux espaces topologiques sont dits homéomorphes. La notion d'homéomorphisme est la bonne notion pour dire que deux espaces topologiques sont « le même » vu différemment. C'est la raison pour laquelle les homéomorphismes sont les isomorphismes de la catégorie des espaces topologiques. Soit et des espaces topologiques, une application bijective de sur .
Adhérence (mathématiques)
En topologie, l'adhérence d'une partie d'un espace topologique est le plus petit ensemble fermé contenant cette partie. Lorsque l'espace est métrisable, c'est aussi l'ensemble des limites de suites convergentes à valeurs dans cette partie. Dans un espace topologique E, l'adhérence d'une partie X, notée , est le « plus petit » (au sens de l'inclusion) fermé contenant X. L'existence d'un tel fermé est claire : il existe au moins un fermé contenant X, à savoir l'espace E lui-même ; d'autre part, l'intersection de tous les fermés contenant X est un fermé contenant X, et est le plus petit ayant cette propriété.
Disque (géométrie)
vignette|Disque. Un disque est une figure géométrique dans un plan (ou plutôt une surface plane) formée des points situés à une distance inférieure ou égale, à une valeur donnée R d'un point O nommé centre. R est le rayon du disque. La frontière du disque est un cercle de centre O et de rayon R appelé Périmètre. Le disque est fermé si la frontière est incluse, et ouvert si elle n'en fait pas partie. Dans le langage courant, on appelle disque un objet plat circulaire, qui est plus exactement un cylindre de révolution d'épaisseur faible devant son rayon.
Unit sphere
In mathematics, a unit sphere is simply a sphere of radius one around a given center. More generally, it is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance". A unit ball is the closed set of points of distance less than or equal to 1 from a fixed central point. Usually the center is at the origin of the space, so one speaks of "the unit ball" or "the unit sphere". Special cases are the unit circle and the unit disk.
3-sphère
vignette|300 px|La 3-sphère en rotation, projetée dans R3. En mathématiques, et plus précisément en géométrie, une 3-sphère est l'analogue d'une sphère en dimension quatre. C'est l'ensemble des points équidistants d'un point central fixé dans un espace euclidien à 4 dimensions. Tout comme une sphère ordinaire (ou 2-sphère) est une surface bidimensionnelle formant la frontière d'une boule en trois dimensions, une 3-sphère est un objet à trois dimensions formant la frontière d'une boule à quatre dimensions.
Distance de Manhattan
La distance de Manhattan, appelée aussi taxi-distance, est la distance entre deux points parcourue par un taxi lorsqu'il se déplace dans une ville où les rues sont agencées selon un réseau ou quadrillage, à l'image de Manhattan. Cette distance fut définie par Hermann Minkowski. Un taxi-chemin est le trajet fait par un taxi lorsqu'il se déplace d'un nœud du réseau à un autre en utilisant les déplacements horizontaux et verticaux du réseau.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.