Couvre le concept de couverture pour les programmes linéaires et la méthode simplex, en se concentrant sur la réduction des coûts et la recherche de solutions optimales.
Explore les méthodes de pénalité quadratique pour les problèmes d'optimisation non convexe-concave et introduit des algorithmes primal-dual avec des fonctions de pénalité.
Explore les méthodes d'optimisation primaire-duelle, se concentrant sur les approches lagrangiennes et diverses méthodes comme la pénalité, la lagrangien augmentée, et les techniques de fractionnement.
Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Explore les méthodes d'optimisation primal-dual, en mettant l'accent sur les techniques de gradient lagrangien et leurs applications dans l'optimisation des données.