Nœud de trèflevignette|Faire un nœud de trèfle (vidéo) vignette|Surface de Seifert associée à un nœud de trèfle : il en forme le bord. En théorie des nœuds, le nœud de trèfle est le nœud le plus simple après le nœud trivial. C'est le seul nœud premier à trois croisements. On peut aussi le décrire comme nœud torique de type (2,3), son mot dans le groupe de tresses étant σ13. Une autre description (liée à la précédente) est l'intersection de la sphère unité dans C2 avec la courbe plane complexe d'équation .
Théorie des nœudsthumb|right|Représentation d’un nœud torique de type (3, 8). La théorie des nœuds est une branche de la topologie qui consiste en l'étude mathématique de courbes présentant des liaisons avec elles-mêmes, un « bout de ficelle » idéalisé en lacets. Elle est donc très proche de la théorie des tresses qui comporte plusieurs chemins ou « bouts de ficelle ». left|thumb|Nœuds triviaux La théorie des nœuds a commencé vers 1860 et avec des travaux de Carl Friedrich Gauss liés à l'électromagnétisme.
Polynôme de JonesLe polynôme de Jones en théorie des nœuds est un invariant polynomial des nœuds (incomplet) introduit par Vaughan Jones en 1984. Plus précisément, c'est un invariant d'un nœud orienté ou d'un entrelacs orienté, qui est un polynôme de Laurent à coefficients entiers en la variable . Le polynôme de Jones est caractérisé par le fait qu'il prend la valeur 1 pour le nœud trivial et vérifie la « » (skein relation) suivante : où , et sont des diagrammes d'entrelacs orientés qui ne diffèrent que dans une petite région de la façon suivante center|200px Le polynôme de Jones, contrairement au polynôme d'Alexander, permet parfois de distinguer un nœud de son image par un miroir.
Polynôme d'AlexanderEn mathématiques, et plus précisément en théorie des nœuds, le polynôme d'Alexander est un invariant de nœuds qui associe un polynôme à coefficients entiers à chaque type de nœud. C'est le premier découvert ; il l'a été par James Waddell Alexander II, en 1923. En 1969, John Conway en montra une version, appelée à présent le polynôme d'Alexander-Conway, pouvant être calculé à l'aide d'une « » (skein relation), mais l'importance n'en fut pas comprise avant la découverte du polynôme de Jones en 1984.
HOMFLY polynomialIn the mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e. a knot invariant in the form of a polynomial of variables m and l. A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One tool used to answer such questions is a knot polynomial, which is computed from a diagram of the knot and can be shown to be an invariant of the knot, i.e.
Homologie de FloerL'homologie de Floer est une adaptation de l'homologie de Morse en dimension infinie. L'homologie de Floer symplectique (HFS) est une théorie homologique pour une variété symplectique munie d'un symplectomorphisme non-dégénéré. Si le symplectomorphisme est hamiltonien, l'homologie provient de l'étude de la fonctionnelle d'action symplectique sur le revêtement universel de l'espace des lacets de la variété symplectique. L'homologie de Floer symplectique est invariante par isotopie hamiltonienne du symplectomorphisme.
Braid groupIn mathematics, the braid group on n strands (denoted ), also known as the Artin braid group, is the group whose elements are equivalence classes of n-braids (e.g. under ambient isotopy), and whose group operation is composition of braids (see ). Example applications of braid groups include knot theory, where any knot may be represented as the closure of certain braids (a result known as Alexander's theorem); in mathematical physics where Artin's canonical presentation of the braid group corresponds to the Yang–Baxter equation (see ); and in monodromy invariants of algebraic geometry.
Anneaux borroméensEn mathématiques et plus précisément en théorie des nœuds, les anneaux borroméens constituent un entrelacs de trois cercles (au sens topologique) qui ne peuvent être détachés les uns des autres même en les déformant, mais tel que la suppression de n'importe quel cercle libère les deux cercles restants. Autrement dit, il s'agit d'un exemple d'entrelacs brunnien. La dénomination vient de l'utilisation qui en était faite dans les armoiries d'une famille italienne, les Borromeo.
Khovanov homologyIn mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial. It was developed in the late 1990s by Mikhail Khovanov, then at the University of California, Davis, now at Columbia University. To any link diagram D representing a link L, we assign the Khovanov bracket [D], a cochain complex of graded vector spaces. This is the analogue of the Kauffman bracket in the construction of the Jones polynomial.
Chiral knotIn the mathematical field of knot theory, a chiral knot is a knot that is not equivalent to its mirror image (when identical while reversed). An oriented knot that is equivalent to its mirror image is an amphicheiral knot, also called an achiral knot. The chirality of a knot is a knot invariant. A knot's chirality can be further classified depending on whether or not it is invertible. There are only five knot symmetry types, indicated by chirality and invertibility: fully chiral, invertible, positively amphicheiral noninvertible, negatively amphicheiral noninvertible, and fully amphicheiral invertible.