Explore le contrôle de l'agrégation protéique par des stratégies optimales, des inhibiteurs et une régulation spatiale à l'aide de compartiments liquides, éclairant les interventions médicamenteuses et la dynamique des agrégats.
Introduit une théorie de contrôle optimale, couvrant les modèles, la discrétisation, les mesures, les conditions lagrangiennes, KKT et l'invertibilité.
Explore l'apprentissage visuel sûr et efficace en matière de données pour la robotique, couvrant la théorie du contrôle, les systèmes de perception, l'apprentissage de bout en bout et les politiques d'experts.
Explore le défi de contrôle dans les systèmes robotiques souples et l'utilisation de modèles simplifiés avec théorie de contrôle non linéaire pour l'exécution dynamique des tâches.
Couvre les méthodes de prédiction sans modèle dans l'apprentissage par renforcement, en se concentrant sur Monte Carlo et les différences temporelles pour estimer les fonctions de valeur sans connaissance de la dynamique de transition.
Introduit l'apprentissage par renforcement, couvrant ses définitions, ses applications et ses fondements théoriques, tout en décrivant la structure et les objectifs du cours.
Couvre la conception du contrôleur numérique, les modèles à temps discret, le contrôleur RST, le placement des pôles, la régulation, le suivi et les performances du domaine temporel.