Nombre triangulairedroite|vignette|upright=1.3|Représentation figurée des quatre premiers nombres triangulaires. vignette|upright=1.3|Le septième nombre triangulaire est 28. En arithmétique, un nombre triangulaire est un cas particulier de nombre polygonal. Il correspond à un entier naturel non nul égal au nombre de pastilles dans un triangle construit à la manière des deux figures de droite. La seconde montre que le septième nombre triangulaire — celui dont le côté porte 7 pastilles — est 28.
Suite géométriqueEn mathématiques, une suite géométrique est une suite de nombres dans laquelle chaque terme permet de déduire le suivant par multiplication par un facteur constant appelé raison. Ainsi, une suite géométrique a la forme suivante : La définition peut s'écrire sous la forme d'une relation de récurrence, c'est-à-dire que pour chaque entier naturel n : Le qualificatif « géométrique » réfère au fait que, dans une suite géométrique à termes positifs, un terme quelconque (à l'exception du premier) est égal à la moyenne géométrique du terme qui le précède et de celui qui lui succède.
BrahmaguptaBrahmagupta (ब्रह्मगुप्त) (Multân, 598–670) est un mathématicien et astronome indien. Brahmagupta est l'un des plus importants mathématiciens tant de l'Inde que de son époque. On lui connait deux ouvrages majeurs : le Brāhmasphuṭasiddhānta (ब्राह्मस्फुटसिद्धान्त) en 628 et le Khandakhâdyaka en 665. Il dirige l'observatoire astronomique d'Ujjain, ville qui est au un centre majeur de recherches en mathématique.
Mathématiques indiennesLa chronologie des mathématiques indiennes s'étend de la civilisation de la vallée de l'Indus (-3300 à -1500) jusqu'à l'Inde moderne. Parmi les contributions des mathématiciens indiens au développement de la discipline, la plus féconde est certainement la numération décimale de position, appuyée sur des chiffres indiens, empruntés par les Arabes et qui se sont imposés dans le monde entier. Les Indiens ont maîtrisé le zéro, les nombres négatifs, les fonctions trigonométriques.
Nombre premiervignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
Série géométriquethumb|Preuve sans mots de l'égalité1/2 + 1/4 + 1/8 + 1/16 + ⋯ = 1 thumb|Illustration de l'égalité 1/4 + 1/16 + 1/64 + 1/256 + ⋯ = 1/3 :chacun des carrés violets mesure 1/4 de la surface du grand carré le plus proche (1/2× = 1/4, 1/4×1/4 = 1/16, etc.). Par ailleurs, la somme des aires des carrés violets est égale à un tiers de la superficie du grand carré. En mathématiques, la série géométrique est l'un des exemples de série numérique les plus simples.
Raisonnement par récurrencevignette|Le raisonnement par récurrence est comme une suite de dominos. Si la propriété est vraie au rang n0 (i. e. le premier domino de numéro 0 tombe) et si sa véracité au rang n implique celle au rang n + 1 (i. e. la chute du domino numéro n fait tomber le domino numéro n + 1) alors la propriété est vraie pour tout entier (i. e. tous les dominos tombent). En mathématiques, le raisonnement par récurrence (ou par induction, ou induction complète) est une forme de raisonnement visant à démontrer une propriété portant sur tous les entiers naturels.
Théorème des nombres premiersvignette|Une illustration du théorème des nombres premiers : en rouge, le nombre de nombres premiers inférieurs ou égaux à x ; en vert, une approximation utilisant ; en bleu, une approximation utilisant l'intégrale logarithmique . En mathématiques, et plus précisément en théorie analytique des nombres, le théorème des nombres premiers, démontré indépendamment par Hadamard et La Vallée Poussin en 1896, est un résultat concernant la distribution asymptotique des nombres premiers.
Suite (mathématiques)vignette|Exemple de suite : les points bleus représentent ses termes. En mathématiques, une suite est une famille d'éléments — appelés ses « termes » — indexée par les entiers naturels. Une suite finie est une famille indexée par les entiers strictement positifs inférieurs ou égaux à un certain entier, ce dernier étant appelé « longueur » de la suite. Lorsque tous les éléments d'une suite (infinie) appartiennent à un même ensemble , cette suite peut être assimilée à une application de dans .
FactorielleEn mathématiques, la factorielle d'un entier naturel n est le produit des nombres entiers strictement positifs inférieurs ou égaux à n. Cette opération est notée avec un point d'exclamation, n!, ce qui se lit soit « factorielle de n », soit « factorielle n », soit « n factorielle ». Cette notation a été introduite en 1808 par Christian Kramp. Par exemple, la factorielle 10 exprime le nombre de combinaisons possibles de placement des 10 convives autour d'une table (on dit la permutation des convives).