Isomorphisme de graphesEn mathématiques, dans le cadre de la théorie des graphes, un isomorphisme de graphes est une bijection entre les sommets de deux graphes qui préserve les arêtes. Ce concept est en accord avec la notion générale d'isomorphisme, une bijection qui préserve les structures. Plus précisément, un isomorphisme f entre les graphes G et H est une bijection entre les sommets de G et ceux de H, telle qu'une paire de sommets {u, v} de G est une arête de G si et seulement si {ƒ(u), ƒ(v)} est une arête de H.
Peripheral cycleIn graph theory, a peripheral cycle (or peripheral circuit) in an undirected graph is, intuitively, a cycle that does not separate any part of the graph from any other part. Peripheral cycles (or, as they were initially called, peripheral polygons, because Tutte called cycles "polygons") were first studied by , and play important roles in the characterization of planar graphs and in generating the cycle spaces of nonplanar graphs.
Biconnected componentIn graph theory, a biconnected component (sometimes known as a 2-connected component) is a maximal biconnected subgraph. Any connected graph decomposes into a tree of biconnected components called the block-cut tree of the graph. The blocks are attached to each other at shared vertices called cut vertices or separating vertices or articulation points. Specifically, a cut vertex is any vertex whose removal increases the number of connected components.
Tri topologiqueEn théorie des graphes, et plus spécialement en algorithmique des graphes, un tri topologique d'un graphe acyclique orienté (ou dag, de l'anglais directed acyclic graph) est un ordre total sur l'ensemble des sommets, dans lequel s précède t pour tout arc d'un sommet s à un sommet t. En d'autres termes, un tri topologique est une extension linéaire de l'ordre partiel sur les sommets déterminés par les arcs. Soit un graphe orienté avec et . Un ordre topologique sur ce graphe peut donner par exemple la succession des sommets 7, 1, 2, 9, 8, 4, 3, 5, 6.
Induced pathIn the mathematical area of graph theory, an induced path in an undirected graph G is a path that is an induced subgraph of G. That is, it is a sequence of vertices in G such that each two adjacent vertices in the sequence are connected by an edge in G, and each two nonadjacent vertices in the sequence are not connected by any edge in G. An induced path is sometimes called a snake, and the problem of finding long induced paths in hypercube graphs is known as the snake-in-the-box problem.
Chaîne (théorie des graphes)Dans un graphe non orienté, une chaîne reliant à , notée , est définie par une suite finie d'arêtes consécutives, reliant à . La notion correspondante dans les graphes orientés est celle de chemin. Une chaîne élémentaire est une chaîne ne passant pas deux fois par un même sommet, c'est-à-dire dont tous les sommets sont distincts. Une chaîne simple est une chaîne ne passant pas deux fois par une même arête, c'est-à-dire dont toutes les arêtes sont distinctes. Un cycle est une chaîne simple dont les deux extrémités sont identiques.
Pseudo-forêtvignette|upright=1.2 |Une 1-forêt (une pseudo-forêt maximale), composée de trois 1-arbres En théorie des graphes, une pseudo-forêt est un graphe non orienté, ou même un multigraphe dans lequel chaque composante connexe possède au plus un cycle. De manière équivalente, une pseudo-forêt est un graphe dans lequel deux cycles ne sont pas connectés par une chaîne. Un pseudo-arbre est une pseudo-forêt connexe. Les noms évoquent l'analogie avec les arbres et les forêts plus couramment étudiés : un arbre est un graphe connexe sans cycle ; une forêt est une union disjointe d'arbres.
Boucle (théorie des graphes)In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same vertices): Where graphs are defined so as to allow loops and multiple edges, a graph without loops or multiple edges is often distinguished from other graphs by calling it a simple graph.
Strangulated graphIn graph theoretic mathematics, a strangulated graph is a graph in which deleting the edges of any induced cycle of length greater than three would disconnect the remaining graph. That is, they are the graphs in which every peripheral cycle is a triangle. In a maximal planar graph, or more generally in every polyhedral graph, the peripheral cycles are exactly the faces of a planar embedding of the graph, so a polyhedral graph is strangulated if and only if all the faces are triangles, or equivalently it is maximal planar.
Théorème des graphes parfaitsEn mathématiques, et plus précisément en théorie des graphes, le théorème des graphes parfaits (parfois appelé théorème fort des graphes parfaits) est une caractérisation des graphes parfaits par certains sous-graphes , conjecturée par Claude Berge en 1961. Maria Chudnovsky, Neil Robertson, Paul Seymour, et Robin Thomas en annoncèrent la démonstration en 2002, et la publièrent en 2006. Elle valut à leurs auteurs le prix Fulkerson de 2009.