Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases de Pytorch avec les ensembles de données MNIST et Digits, en mettant l'accent sur la formation des réseaux neuronaux pour la reconnaissance manuscrite des chiffres.
Explore l'analyse des signaux EMG, les modèles de mélange, les modèles gaussiens et le tri des pics dans le traitement des signaux neuraux à l'aide de PCA.
Explore la propagation des croyances, les clusters gelés et les seuils de colorabilité dans les modèles graphiques, ce qui explique l'importance de la propagation des enquêtes dans la résolution des problèmes de satisfaction liés aux contraintes.
Couvre l'histoire et l'inspiration derrière les réseaux neuronaux artificiels, la structure des neurones, l'apprentissage par les connexions synaptiques et la description mathématique des neurones artificiels.