Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Fonction logistique (Verhulst)En mathématiques, les fonctions logistiques sont les fonctions ayant pour expression où et sont des réels positifs et un réel quelconque. Ce sont les solutions en temps continu du modèle de Verhulst. Pour , leur courbe représentative a la forme d'un S ce qui fait qu'elles sont parfois appelées sigmoïdes. Ces fonctions ont été mises en évidence (vers 1840) par Pierre-François Verhulst, qui cherchait un modèle d'évolution non exponentielle de population comportant un frein et une capacité d'accueil .
Modèle probitEn statistiques, le modèle probit est un modèle de régression binomiale. Le modèle probit a été introduit par Chester Bliss en 1934. C'est un cas particulier du modèle linéaire généralisé. Soit Y une variable aléatoire binaire (i.e. prenant pour valeur 0 ou 1) et X un vecteur de variables dont on suppose qu'il influence Y. On fait l'hypothèse que le modèle s'écrit de la manière suivante : où désigne la fonction de répartition de la loi normale centrée réduite. Régression logistique Catégorie:Modèle statist
Sigmoïde (mathématiques)En mathématiques, la fonction sigmoïde (dite aussi courbe en S) est définie par : pour tout réel mais on la généralise à toute fonction dont l'expression est : Elle représente la fonction de répartition de la loi logistique. La courbe sigmoïde génère par transformation affine une partie des courbes logistiques, ce qui en fait une représentante privilégiée. La fonction sigmoïde est souvent utilisée dans les réseaux de neurones parce qu'elle est dérivable, ce qui est nécessaire pour l'algorithme de rétropropagation de Werbos, et parce que son codomaine est l'intervalle , ce qui permet d'obtenir des valeurs analogues à des probabilités.
Modèle linéaire généraliséEn statistiques, le modèle linéaire généralisé (MLG) souvent connu sous les initiales anglaises GLM est une généralisation souple de la régression linéaire. Le GLM généralise la régression linéaire en permettant au modèle linéaire d'être relié à la variable réponse via une fonction lien et en autorisant l'amplitude de la variance de chaque mesure d'être une fonction de sa valeur prévue, en fonction de la loi choisie.
ProbitIn probability theory and statistics, the probit function is the quantile function associated with the standard normal distribution. It has applications in data analysis and machine learning, in particular exploratory statistical graphics and specialized regression modeling of binary response variables. Mathematically, the probit is the inverse of the cumulative distribution function of the standard normal distribution, which is denoted as , so the probit is defined as Largely because of the central limit theorem, the standard normal distribution plays a fundamental role in probability theory and statistics.
Discrete choiceIn economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis.
Loi logistiqueEn probabilité et en statistiques, la loi logistique est une loi de probabilité absolument continue à support infini utilisé en régression logistique et pour les réseaux de neurones à propagation avant. Son nom de loi logistique est issu du fait que sa fonction de répartition est une fonction logistique. La loi logistique a deux paramètres μ et s > 0 et sa densité est Sa fonction de répartition est Son espérance et sa variance sont données par les formules suivantes : La loi logistique standard est la loi logistique de paramètres 0 et 1.
Analyse discriminante linéaireEn statistique, l’analyse discriminante linéaire ou ADL (en anglais, linear discriminant analysis ou LDA) fait partie des techniques d’analyse discriminante prédictive. Il s’agit d’expliquer et de prédire l’appartenance d’un individu à une classe (groupe) prédéfinie à partir de ses caractéristiques mesurées à l’aide de variables prédictives. Dans l’exemple de l'article Analyse discriminante, le fichier Flea Beetles, l’objectif est de déterminer l’appartenance de puces à telle ou telle espèce à partir de la largeur et de l’angle de son édéage (partie des organes génitaux mâles de l'insecte.
Hartley (unit)The hartley (symbol Hart), also called a ban, or a dit (short for decimal digit), is a logarithmic unit that measures information or entropy, based on base 10 logarithms and powers of 10. One hartley is the information content of an event if the probability of that event occurring is . It is therefore equal to the information contained in one decimal digit (or dit), assuming a priori equiprobability of each possible value. It is named after Ralph Hartley.