Concepts associés (29)
Théorème isopérimétrique
En mathématiques, et plus précisément en géométrie, un théorème isopérimétrique est une généralisation des résultats plus élémentaires d'isopérimétrie montrant par exemple que le disque est, à périmètre donné, la figure ayant la plus grande aire. Les questions traitées par cette généralisation concernent les compacts d'un espace métrique muni d'une mesure. Un exemple simple est donné par les compacts d'un plan euclidien. Les compacts concernés sont ceux de mesures finies ayant une frontière aussi de mesure finie.
Relations d'Euler dans le triangle
vignette| Les relations d'Euler dans le triangle sont des relations entre les rayons des cercles inscrit/exinscrits et circonscrit. Leonhard Euler les a publiées en 1767 , mais elles l'avaient déjà été par William Chappie en 1746. Notons qu'on désigne aussi par relation d'Euler la relation vectorielle reliant le centre de gravité, l'orthocentre et le centre du cercle circonscrit. Pour un triangle quelconque, on note O, I, I les centres respectifs des cercles circonscrit, inscrit, et exinscrit dans l'angle (par exemple), et R, r, r leurs rayons respectifs.
Inscribed figure
In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants).
Steiner ellipse
In geometry, the Steiner ellipse of a triangle, also called the Steiner circumellipse to distinguish it from the Steiner inellipse, is the unique circumellipse (ellipse that touches the triangle at its vertices) whose center is the triangle's centroid. Named after Jakob Steiner, it is an example of a circumconic. By comparison the circumcircle of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is equilateral.
Théorème de Morley
En mathématiques, et plus précisément en géométrie plane, le théorème de Morley, découvert par Frank Morley en 1898, affirme que les intersections des trissectrices des angles d'un triangle forment un triangle équilatéral. Le triangle équilatéral ainsi défini par le théorème de Morley s'appelle le « triangle de Morley » du triangle de départ. Il existe de nombreuses démonstrations de ce théorème.
Chirality (mathematics)
In geometry, a figure is chiral (and said to have chirality) if it is not identical to its , or, more precisely, if it cannot be mapped to its mirror image by rotations and translations alone. An object that is not chiral is said to be achiral. A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'.
Cévienne
vignette|300x300px|Un triangle ABC, avec une cévienne issue de A. En géométrie, une cévienne d'un triangle est, dans son acception la plus générale, une droite passant par l'un des sommets . Certains auteurs restreignent la définition au cas d'un segment joignant un sommet à son côté opposé, voire utilisent les deux définitions . Le mot cévienne vient du nom du mathématicien italien Giovanni Ceva, qui a prouvé un théorème portant son nom donnant une condition pour que trois céviennes passant chacune par un sommet du triangle soient concourantes ou parallèles.
Triangle de Héron
In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84. Heron's formula implies that the Heronian triangles are exactly the positive integer solutions of the Diophantine equation that is, the side lengths and area of any Heronian triangle satisfy the equation, and any positive integer solution of the equation describes a Heronian triangle.
Point de Fermat
En géométrie euclidienne, le point de Fermat d'un triangle ABC donné est le point F du plan pour lequel la somme FA + FB + FC des distances aux trois sommets du triangle est minimale. Il porte ce nom en l'honneur du mathématicien français Pierre de Fermat qui l'évoque dans un de ses ouvrages. Il est également appelé point de Torricelli ou premier point isogonique, ou point de Steiner. L'existence du point F est assurée par le fait que la fonction définie sur le plan par est continue et tend vers l'infini en l'infini, et son unicité par le fait que cette fonction est strictement convexe.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.