Explique l'estimation par l'erreur moyenne au carré et l'information de Fisher dans le contexte des filtres adaptatifs et des distributions exponentiées.
Explore la prédiction linéaire, les coefficients de prédiction, la minimisation de l'erreur quadratique moyenne et l'algorithme de Levinson-Durbin dans le traitement du signal.
Explore l'estimation des erreurs a priori dans la méthode des éléments finis, couvrant l'analyse de convergence, l'orthogonalité, les formulations faibles et la précision optimale.
Explore l'application de la physique statistique dans les problèmes de calcul, couvrant des sujets tels que l'inférence bayésienne, les modèles de verre de spin de champ moyen, et la détection comprimée.
Couvre une introduction mathématique à l'apprentissage profond, y compris les défis, la puissance des classificateurs linéaires, l'échelle du modèle et les aspects théoriques.