Concepts associés (12)
Graphe trivialement parfait
vignette|upright=2| Construction d'un graphe trivialement parfait à partir d'intervalles imbriqués et de la relation d'accessibilité dans un arbre. En théorie des graphes, un graphe trivialement parfait est un graphe qui a la propriété que dans chacun de ses sous-graphes induits, la taille du stable maximal est égale au nombre de cliques maximales. Les graphes trivialement parfaits ont été étudiés pour la première fois par Elliot S.
Graphe scindé
vignette|240x240px| Un graphe scindé, partitionné en une clique et un ensemble stable. En théorie des graphes, un graphe scindé ou graphe séparé (en anglais : split graph) est un graphe dont les sommets peuvent être partitionnés deux parties : une clique et un ensemble stable. Les graphes scindés ont été étudiés pour la première fois par Földes et Marteau en 1977, et introduit indépendamment par Tyshkevich et Tchernyak en 1979 .
Graphe d'intersection
En théorie des graphes, un graphe d'intersection est un graphe représentant les intersections d'une famille d'ensembles. Plus précisément, pour une famille d'ensembles finie donnée, on associe à chaque ensemble un sommet, et deux sommets sont reliés par une arête si les ensembles ont une intersection non nulle. Beaucoup de familles de graphe sont définies par l'intersection d'ensembles géométriques, par exemple des sphères dans le plan, ou des intervalles sur une droite.
Graphe de comparabilité
Dans la théorie des graphes, un graphe de comparabilité est un graphe non orienté qui relie les paires d'éléments qui sont comparables les uns aux autres dans un ordre partiel donné. On les trouve aussi sous le nom de transitively orientable graphs, partially orderable graphs, et containment graphs. Les graphes de comparabilité sont des graphes parfaits. Les cographes sont des graphes de comparabilité Les graphes qui sont de comparabilité et dont le complémentaire est aussi de comparabilité sont exactement les graphes de permutations.
Cographe
Un cographe est, en théorie des graphes, un graphe qui peut être généré par complémentation et union disjointe à partir du graphe à un nœud. La plupart des problèmes algorithmiques peuvent être résolus sur cette classe en temps polynomial, et même linaire, du fait de ses propriétés structurelles. Cette famille de graphe a été introduite par plusieurs auteurs indépendamment dans les années 1970 sous divers noms, notamment D*-graphes, hereditary Dacey graphs et 2-parity graphs.
Problème de la clique
thumb|upright=1.5|Recherche exhaustive d'une 4-clique dans ce graphe à 7 sommets en testant la complétude des C(7,4)= 35 sous-graphes à 4 sommets. En informatique, le problème de la clique est un problème algorithmique qui consiste à trouver des cliques (sous-ensembles de sommets tous adjacents deux à deux, également appelés sous-graphes complets) dans un graphe. Ce problème a plusieurs formulations différentes selon les cliques et les informations sur les cliques devant être trouvées.
Problème de l'isomorphisme de graphes
vignette|Le problème est de savoir si deux graphes sont les mêmes. En informatique théorique, le problème de l'isomorphisme de graphes est le problème de décision qui consiste, étant donné deux graphes non orientés, à décider s'ils sont isomorphes ou pas, c'est-à-dire s'ils sont les mêmes, quitte à renommer les sommets. Ce problème est particulièrement important en théorie de la complexité, plus particulièrement pour le problème P=NP.
Graphe d'intervalles
En théorie des graphes, un graphe d'intervalles est le graphe d'intersection d'un ensemble d'intervalles de la droite réelle. Chaque sommet du graphe d'intervalles représente un intervalle de l'ensemble, et une arête relie deux sommets lorsque les deux intervalles correspondants s'intersectent. Etant donnés des intervalles , le graphe d'intervalle correspondant est où et Les graphes d'intervalles sont utilisés pour modéliser les problèmes d'allocation de ressources en recherche opérationnelle et en théorie de la planification.
Graphe parfait
En théorie des graphes, le graphe parfait est une notion introduite par Claude Berge en 1960. Il s'agit d'un graphe pour lequel le nombre chromatique de chaque sous-graphe induit et la taille de la plus grande clique dudit sous-graphe induit sont égaux. Un graphe est 1-parfait si son nombre chromatique (noté ) est égal à la taille de sa plus grande clique (notée ) : . Dans ce cas, est parfait si et seulement si tous les sous graphes de sont 1-parfait.
Clique (théorie des graphes)
thumb|Exemple de graphe possédant une 3-clique (en rouge) : les trois sommets de ce sous-graphe sont tous adjacents deux-à-deux. thumb|Exemple de « biclique » : le graphe biparti complet K3,3. Une clique d'un graphe non orienté est, en théorie des graphes, un sous-ensemble des sommets de ce graphe dont le sous-graphe induit est complet, c'est-à-dire que deux sommets quelconques de la clique sont toujours adjacents. Une clique maximum d'un graphe est une clique dont le cardinal est le plus grand (c'est-à-dire qu'elle possède le plus grand nombre de sommets).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.