En logique formelle, le principe du tiers exclu (ou "principium medii exclusi" [principe du milieu exclu] ou " tertium non datur" [une troisième possibilité n'est pas accordée] , ou simplement le « tiers exclu ») énonce qu'ou bien une proposition est vraie, ou bien sa négation est vraie. Par exemple, Socrate est vivant ou mort, et il n'y a pas de cas intermédiaire entre ces deux états de Socrate, c'est pourquoi on parle de « tiers-exclu » : tous les autres cas de figure sont nécessairement exclus. C'est un des principes de la logique classique. Au début de la formalisation des mathématiques, ce principe a été tenu comme un dogme intangible. D'ailleurs, David Hilbert, un de ses grands défenseurs, a écrit, Le tiers-exclu est souvent comparé au principe de non-contradiction qui affirme que les propositions p et non-p ne peuvent être simultanément vraies, c'est-à-dire que la conjonction « p et non-p » est nécessairement fausse. Dans sa Métaphysique, Aristote introduit le principe du tiers exclu comme complément du principe de non-contradiction. En philosophie, le principe du tiers exclu, comme le principe d'identité, a une double version, ontologique ou logique. La version ontologique rejette la notion de gradation dans l'être : il y a être, ou non-être, pas de demi-être. Parmi les deux propositions p et non-p (ou toute autre paire de propositions), en l'absence de système de logique formelle, on pourrait en théorie avoir l'un des trois cas suivants : p est vraie ou non-p est vraie, exclusivement ; p et non-p sont toutes deux vraies ; ni p ni non-p ne sont vraies. Le principe de non-contradiction qui fonde la logique formelle rejette le cas 2 pour une paire de propositions qui sont la négation logique l'une de l'autre : on ne peut penser p et non-p vraies à la fois. Le principe du tiers-exclu rejette le cas 3 : on ne peut penser que p ou non-p, il n'y a pas de troisième cas hypothétique. La « loi de l'alternative » (Robert Blanché) résulte de la conjonction du principe de non-contradiction et du principe du tiers exclu.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
MATH-381: Mathematical logic
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
AR-226: History of Architecture V/VI
This is a survey course on the history of architecture of the twentieth century.
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Séances de cours associées (17)
Approximation par des fonctions lisses
Discute de l'approximation par des fonctions lisses et de la convergence des séquences de fonctions dans des espaces vectoriels normés.
Preuves : Logique, Mathématiques et Algorithmes
Explore les concepts, les techniques et les applications de la preuve dans la logique, les mathématiques et les algorithmes.
Tutoriel court Coq
Offre un tutoriel sur Coq, couvrant les définitions inductives, les fonctions récursives, les propositions, les théorèmes et les tactiques.
Afficher plus
Publications associées (7)

Structural Rewriting in XOR-Majority Graphs

Giovanni De Micheli, Mathias Soeken, Zhufei Chu

In this paper, we present a structural rewriting method for a recently proposed XOR-Majority graph (XMG), which has exclusive-OR (XOR), majority-of-three (MAJ), and inverters as primitives. XMGs are an extension of Majority-Inverter Graphs (MIGs). Previous ...
ASSOC COMPUTING MACHINERY2019

Search for associated production of a Higgs boson and a single top quark in proton-proton collisions at $\sqrt{s} =$ TeV

Search for the Dark Photon and the Dark Higgs Boson at Belle

Olivier Schneider, Mingkui Wang, Chao Wang, Tagir Aushev, Sun Hee Kim, Jun Yong Kim, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Xiao Wang

The dark photon A' and the dark Higgs boson h' are hypothetical constituents featured in a number of recently proposed dark sector models. Assuming prompt decays of both dark particles, we search for their production in the so-called Higgstrahlung channel ...
Amer Physical Soc2015
Afficher plus
Concepts associés (29)
Logique
La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Calcul des propositions
Le calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
Logique mathématique
La logique mathématique ou métamathématique est une discipline des mathématiques introduite à la fin du , qui s'est donné comme objet l'étude des mathématiques en tant que langage. Les objets fondamentaux de la logique mathématique sont les formules représentant les énoncés mathématiques, les dérivations ou démonstrations formelles représentant les raisonnements mathématiques et les sémantiques ou modèles ou interprétations dans des structures qui donnent un « sens » mathématique générique aux formules (et parfois même aux démonstrations) comme certains invariants : par exemple l'interprétation des formules du calcul des prédicats permet de leur affecter une valeur de vérité'.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.