Catégorie

Calcul des propositions

Le calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts. Il est considéré comme la forme moderne de la logique stoïcienne. La notion de proposition a fait l'objet de nombreux débats au cours de l'histoire de la logique ; l'idée consensuelle est qu'une proposition est une construction syntaxique censée parler de vérité. En logique mathématique, le calcul des propositions est la première étape dans la définition de la logique et du raisonnement. Il définit les règles de déduction qui relient les propositions entre elles, sans en examiner le contenu ; il est ainsi une première étape dans la construction du calcul des prédicats, qui lui s'intéresse au contenu des propositions et qui est une formalisation achevée du raisonnement mathématique. Le calcul des propositions, ou calcul propositionnel est encore appelé logique des propositions, logique propositionnelle ou calcul des énoncés. Quoique le calcul des propositions ne se préoccupe pas du contenu des propositions, mais seulement de leurs relations, il peut être intéressant de discuter ce que pourrait être ce contenu. Une proposition donne une information sur un état de chose. Ainsi « 2 + 2 = 4 » ou « le livre est ouvert » sont deux propositions. En logique classique (logique bivalente), une proposition peut prendre uniquement les valeurs vrai ou faux. Une phrase optative (qui exprime un souhait comme « Que Dieu nous protège ! »), une phrase impérative (« viens ! », « tais-toi ! ») ou une interrogation n'est pas une proposition. « Que Dieu nous protège ! » ne peut être ni vraie ni fausse : elle exprime uniquement un souhait du locuteur.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Catégories associées (9)
Calcul des prédicats
En logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .
Raison
La raison est généralement considérée comme une faculté propre de l'esprit humain dont la mise en œuvre lui permet de créer des critères de vérité et d'erreur et d'atteindre ses objectifs. Elle repose sur la capacité qu'aurait l'être humain de faire des choix en se basant sur son intelligence, ses perceptions et sa mémoire tout en faisant abstraction de ses préjugés, ses émotions ou ses pulsions. Cette faculté a donc plusieurs emplois : connaissance, éthique et technique.
Logique classique
La logique classique est la première formalisation du langage et du raisonnement mathématique développée à partir de la fin du en logique mathématique. Appelée simplement logique à ses débuts, c'est l'apparition d'autres systèmes logiques formels, notamment de la logique intuitionniste, qui a suscité l'adjonction de l'adjectif classique au terme logique. À cette époque, le terme de logique classique fait référence à la logique aristotélicienne.
Afficher plus
Concepts associés (15)
Logique
La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Modus tollens
En logique propositionnelle, le modus tollens (aussi nommé modus tollendo tollens, du Latin : « mode qui, en niant, nie ») est une forme d'argument valide et une règle d'inférence. Celui-ci est une application de la vérité générale selon laquelle, si une proposition est vraie, alors il en est de même pour sa proposition contraposée. Les premiers à décrire explicitement le modus tollens étaient les stoïciens. La règle d'inférence modus tollens est l'inférence selon laquelle « P implique Q » et la négation du conséquent Q entraînent la négation de l'antécédent P.
Calcul des propositions
Le calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
Afficher plus
Cours associés (1)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Séances de cours associées (10)
Règles d'inférence dans la logique propositionnelle
Couvre les règles d'inférence dans la logique propositionnelle et les sophismes logiques communs.
Logique propositionnelle : règles d'inférence et arguments valides
Couvre les règles d'inférence dans la logique propositionnelle et les sophismes logiques communs.
Preuves : Arguments dans la logique des prédicats
Couvre les règles dinférence pour les déclarations quantifiées et la construction darguments valides en utilisant la logique de prédicat.
Afficher plus
Publications associées (4)

Métropole, un concept récent pour un débat centenaire

Marc Antoine Messer

Métropoles et métropolisation semblent être les maîtres mots pour comprendre les phénomènes d’urbanisation du XXIème siècle globalisé. Mais, si on les considère sous l’angle de la planification territoriale et qu’on s’en saisit comme un objet d’urbanisme, ...
2018

Disabling conditional inferences: An EEG study

Mariia Kaliuzhna

Although the Modus Ponens inference is one of the most basic logical rules, decades of conditional reasoning research show that it is often rejected when people consider stored background knowledge about potential disabling conditions. In the present study ...
Pergamon-Elsevier Science Ltd2014

Modélisation, Simulation et Optimisation des chambres de compression/détente hydropneumatique du système HyPES

Nicolas Fromont

Ce projet consiste en la modélisation, la simulation et l’optimisation de l’échangeur de chaleur interne à la chambre de compression/détente pour le stockage d’énergie. Au cours de l’étude deux types d’analyses vont être présentées : une analyse numérique ...
2013
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.