Le calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts. Il est considéré comme la forme moderne de la logique stoïcienne.
La notion de proposition a fait l'objet de nombreux débats au cours de l'histoire de la logique ; l'idée consensuelle est qu'une proposition est une construction syntaxique censée parler de vérité. En logique mathématique, le calcul des propositions est la première étape dans la définition de la logique et du raisonnement. Il définit les règles de déduction qui relient les propositions entre elles, sans en examiner le contenu ; il est ainsi une première étape dans la construction du calcul des prédicats, qui lui s'intéresse au contenu des propositions et qui est une formalisation achevée du raisonnement mathématique. Le calcul des propositions, ou calcul propositionnel est encore appelé logique des propositions, logique propositionnelle ou calcul des énoncés.
Quoique le calcul des propositions ne se préoccupe pas du contenu des propositions, mais seulement de leurs relations, il peut être intéressant de discuter ce que pourrait être ce contenu. Une proposition donne une information sur un état de chose. Ainsi « 2 + 2 = 4 » ou « le livre est ouvert » sont deux propositions.
En logique classique (logique bivalente), une proposition peut prendre uniquement les valeurs vrai ou faux. Une phrase optative (qui exprime un souhait comme « Que Dieu nous protège ! »), une phrase impérative (« viens ! », « tais-toi ! ») ou une interrogation n'est pas une proposition. « Que Dieu nous protège ! » ne peut être ni vraie ni fausse : elle exprime uniquement un souhait du locuteur.
Catégories
Source officielle
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En logique, le principe de non-contradiction est la loi qui interdit d'affirmer et nier à la fois le même terme ou la même proposition. Aristote ne nomme pas le principe de non-contradiction mais le définit ainsi dans Métaphysique : « Il est impossible qu’un même attribut appartienne et n’appartienne pas en même temps et sous le même rapport à une même chose ». Assurément, une chose peut être blanche aujourd’hui ou d’une autre couleur demain. De même, cette chose est plus grande ou plus petite qu’une autre à un moment donné.
En logique classique, un syllogisme hypothétique est une règle d'inférence valide, qui prend la forme d'un syllogisme ayant une implication pour un ou deux de ses prémisses. Si je ne me réveille pas, alors je ne peux pas aller travailler. Si je ne peux pas aller travailler, alors je ne vais pas être payé. Par conséquent, si je ne me réveille pas, alors je ne vais pas être payé. En logique propositionnelle, un syllogisme hypothétique est le nom d'une règle d'inférence valide (souvent abrégé HS et parfois aussi appelé l'argument de la chaîne, la règle de la chaîne, ou le principe de transitivité de l'implication).
Le modus ponens, ou détachement, est une figure du raisonnement logique concernant l'implication. Elle consiste à affirmer une implication (« si A alors B ») et à poser ensuite l'antécédent (« or A ») pour en déduire le conséquent (« donc B »). Le terme modus ponens est une abréviation du latin modus ponendo ponens qui signifie « le mode qui, en posant, pose ». Il vient de ce qu'en posant (affirmant) A, on pose (affirme) B (ponendo est le gérondif du verbe ponere qui signifie poser, et ponens en est le participe présent).
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
En logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .
La raison est généralement considérée comme une faculté propre de l'esprit humain dont la mise en œuvre lui permet de créer des critères de vérité et d'erreur et d'atteindre ses objectifs. Elle repose sur la capacité qu'aurait l'être humain de faire des choix en se basant sur son intelligence, ses perceptions et sa mémoire tout en faisant abstraction de ses préjugés, ses émotions ou ses pulsions. Cette faculté a donc plusieurs emplois : connaissance, éthique et technique.
La logique classique est la première formalisation du langage et du raisonnement mathématique développée à partir de la fin du en logique mathématique. Appelée simplement logique à ses débuts, c'est l'apparition d'autres systèmes logiques formels, notamment de la logique intuitionniste, qui a suscité l'adjonction de l'adjectif classique au terme logique. À cette époque, le terme de logique classique fait référence à la logique aristotélicienne.
Although the Modus Ponens inference is one of the most basic logical rules, decades of conditional reasoning research show that it is often rejected when people consider stored background knowledge about potential disabling conditions. In the present study ...
Ce projet consiste en la modélisation, la simulation et l’optimisation de l’échangeur de chaleur interne à la chambre de compression/détente pour le stockage d’énergie. Au cours de l’étude deux types d’analyses vont être présentées : une analyse numérique ...
2013
Métropoles et métropolisation semblent être les maîtres mots pour comprendre les phénomènes d’urbanisation du XXIème siècle globalisé. Mais, si on les considère sous l’angle de la planification territoriale et qu’on s’en saisit comme un objet d’urbanisme, ...