Boucle (théorie des graphes)In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same vertices): Where graphs are defined so as to allow loops and multiple edges, a graph without loops or multiple edges is often distinguished from other graphs by calling it a simple graph.
Graphe orientéthumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.
Graph rewritingIn computer science, graph transformation, or graph rewriting, concerns the technique of creating a new graph out of an original graph algorithmically. It has numerous applications, ranging from software engineering (software construction and also software verification) to layout algorithms and picture generation. Graph transformations can be used as a computation abstraction. The basic idea is that if the state of a computation can be represented as a graph, further steps in that computation can then be represented as transformation rules on that graph.
Induced subgraphIn the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and all of the edges (from the original graph) connecting pairs of vertices in that subset. Formally, let be any graph, and let be any subset of vertices of G. Then the induced subgraph is the graph whose vertex set is and whose edge set consists of all of the edges in that have both endpoints in . That is, for any two vertices , and are adjacent in if and only if they are adjacent in .
Carquois (théorie des catégories)Un carquois est une collection d'arcs joignant des couples de points. En ce sens, il s'agit d'un graphe orienté, mais la notion intervient en physique théorique ainsi qu'en théorie des représentations, des groupes et des catégories de manière naturelle. En effet, une catégorie est un carquois doté d'une structure supplémentaire : nommément la présence d'identités et de compositions. On parle donc de carquois lorsque l'on souhaite évoquer ce contexte catégorique (ou de représentation), plutôt que de (multi-di-)graphe orienté.
Sommet (théorie des graphes)vignette|Dans ce graphe, les sommets 4 et 5 sont voisins alors que les sommets 3 et 5 sont indépendants. Le degré du sommet 4 est égal à 3. Le sommet 6 est une feuille. En théorie des graphes, un sommet, aussi appelé nœud et plus rarement point, est l'unité fondamentale d'un graphe. Deux sommets sont voisins s'ils sont reliés par une arête. Deux sommets sont indépendants s'ils ne sont pas voisins. alt=A small example network with 8 vertices and 10 edges.|vignette|Réseau de huit sommets (dont un isolé) et 10 arêtes.
Multiple edgesIn graph theory, multiple edges (also called parallel edges or a multi-edge), are, in an undirected graph, two or more edges that are incident to the same two vertices, or in a directed graph, two or more edges with both the same tail vertex and the same head vertex. A simple graph has no multiple edges and no loops. Depending on the context, a graph may be defined so as to either allow or disallow the presence of multiple edges (often in concert with allowing or disallowing loops): Where graphs are defined so as to allow multiple edges and loops, a graph without loops or multiple edges is often distinguished from other graphs by calling it a simple graph.
Graphe (mathématiques discrètes)Dans le domaine des mathématiques discrètes, la théorie des graphes définit le graphe, une structure composée d'objets et de relations entre deux de ces objets. Abstraitement, lesdits objets sont appelés sommets (ou nœuds ou points), et les relations entre eux sont nommées arêtes (ou liens ou lignes). On distingue les graphes non orientés, où les arêtes relient deux sommets de manière symétrique, et les graphes orientés, où les arêtes, alors appelées arcs (ou flèches), relient deux sommets de manière asymétrique.
HypergrapheLes hypergraphes sont des objets mathématiques généralisant la notion de graphe. Ils ont été nommés ainsi par Claude Berge dans les années 1960. Les hypergraphes généralisent la notion de graphe non orienté dans le sens où les arêtes ne relient plus un ou deux sommets, mais un nombre quelconque de sommets (compris entre un et le nombre de sommets de l’hypergraphe). Certains théorèmes de la théorie des graphes se généralisent naturellement aux hypergraphes, par exemple le théorème de Ramsey.
Degré (théorie des graphes)thumb|Un graphe non orienté où on a indiqué le degré de chaque sommet sur ce sommet. Dans ce graphe, le degré maximal est et le degré minimal est . En mathématiques, et plus particulièrement en théorie des graphes, le degré (ou valence) d'un sommet d'un graphe est le nombre de liens (arêtes ou arcs) reliant ce sommet, avec les boucles comptées deux fois. Le degré d'un sommet est noté . Dans le cas d'un graphe orienté, on parle aussi du degré entrant d'un sommet , c'est-à-dire le nombre d'arcs dirigés vers le sommet , et du degré sortant de ce sommet , c'est-à-dire le nombre d'arcs sortant de .