Concept

Théorème de convergence de Lévy

Résumé
En théorie des probabilités, le théorème de convergence de Lévy, nommé d'après le mathématicien Paul Lévy, relie la convergence en loi d'une suite de variables aléatoires avec la convergence ponctuelle de leurs fonctions caractéristiques. Ce théorème est également appelé théorème de continuité de Lévy, théorème de continuité de Lévy-Cramér ou encore en associant d'autres noms tels que théorème de Lévy-Cramér-Dugué. Ce théorème de convergence fondamental est particulièrement utile pour démontrer le théorème central limite. L'utilisation des fonctions caractéristiques en théorie des probabilités remonte aux travaux de Pierre-Simon de Laplace entre 1812 et 1820. Cependant leur première utilisation rigoureuse dans une démonstration date des travaux d'Alexandre Liapounov en 1901. La première version du théorème général de continuité a été établie en 1922 par Paul Lévy qui considère une convergence uniforme des fonctions caractéristiques dans un voisinage de l'origine. Une démonstration plus générale est ensuite issue d'une discussion entre Lévy et George Pólya. Une version plus générale a été donnée par Salomon Bochner en 1933. Depuis, de nombreuses extensions ont été étudiées. Posons une suite de variables aléatoires , pas nécessairement définies sur le même espace de probabilité. Les fonctions et sont les fonctions caractéristiques respectives des variables aléatoires et définies par : Posons une suite de variables aléatoires , pas nécessairement définies sur le même espace de probabilité. La fonction est la fonction caractéristique de la variable aléatoire définie par : Le théorème de continuité de Lévy ne dépend pas du choix des variables aléatoires mais de leur loi. Considérons une suite de lois de probabilité, c'est-à-dire de mesures positives de masse 1 sur . Notons respectivement et leur transformées de Fourier, définies par : Une démonstration est disponible dans l'ouvrage de Varadhan, Théorème 2.3, p. 26. Grâce à l'utilisation de la théorie des transformées de Fourier, le théorème de continuité de Lévy a été généralisé sur des espaces à structures algébriques et topologiques.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.