Résumé
En algèbre linéaire, une forme bilinéaire symétrique est une forme bilinéaire qui est symétrique. Les formes bilinéaires symétriques jouent un rôle important dans l'étude des quadriques. Soit V un espace vectoriel de dimension n sur un corps commutatif K. Une application est une forme bilinéaire symétrique sur l'espace si () : Les deux derniers axiomes impliquent seulement la linéarité par rapport à la « première variable » mais le premier permet d'en déduire la linéarité par rapport à la « deuxième variable ». Tout produit scalaire est une forme bilinéaire symétrique. Soit une base d'un espace vectoriel V. Définissons la matrice carrée A d'ordre n par . La matrice A est symétrique d'après la symétrie de la forme bilinéaire. Si la matrice x de type représente les coordonnées d'un vecteur v dans cette base, et de façon analogue y représente les coordonnées d'un vecteur w, alors est égal à : Supposons que soit une autre base de V, considérons la matrice de passage (inversible) S d'ordre n de la base C à la base C. Dans cette nouvelle base, la représentation matricielle de la forme bilinéaire symétrique est donnée par Une forme bilinéaire symétrique est toujours réflexive. Par définition, deux vecteurs v et w sont orthogonaux pour la forme bilinéaire B si , ce qui, grâce à la réflexivité, est équivalent à . Le noyau d'une forme bilinéaire B est l'ensemble des vecteurs orthogonaux à tout autre vecteur de V. C'est un sous-espace de V. Lorsqu'on travaille avec une représentation matricielle A relativement à une certaine base, un vecteur v représenté par sa matrice colonne des coordonnées x appartient au noyau si et seulement si , ce qui est équivalent à . La matrice A est non inversible (ou « singulière ») si et seulement si le noyau de B n'est pas réduit au sous-espace nul. Si W est un sous-espace vectoriel de V, alors , l'ensemble de tous les vecteurs orthogonaux à tout vecteur de W est aussi un sous-espace de V. Lorsque le noyau de B est trivial, la dimension de est .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.