Summary
In mathematics, a symmetric bilinear form on a vector space is a bilinear map from two copies of the vector space to the field of scalars such that the order of the two vectors does not affect the value of the map. In other words, it is a bilinear function that maps every pair of elements of the vector space to the underlying field such that for every and in . They are also referred to more briefly as just symmetric forms when "bilinear" is understood. Symmetric bilinear forms on finite-dimensional vector spaces precisely correspond to symmetric matrices given a basis for V. Among bilinear forms, the symmetric ones are important because they are the ones for which the vector space admits a particularly simple kind of basis known as an orthogonal basis (at least when the characteristic of the field is not 2). Given a symmetric bilinear form B, the function q(x) = B(x, x) is the associated quadratic form on the vector space. Moreover, if the characteristic of the field is not 2, B is the unique symmetric bilinear form associated with q. Let V be a vector space of dimension n over a field K. A map is a symmetric bilinear form on the space if: The last two axioms only establish linearity in the first argument, but the first axiom (symmetry) then immediately implies linearity in the second argument as well. Let V = Rn, the n dimensional real vector space. Then the standard dot product is a symmetric bilinear form, B(x, y) = x ⋅ y. The matrix corresponding to this bilinear form (see below) on a standard basis is the identity matrix. Let V be any vector space (including possibly infinite-dimensional), and assume T is a linear function from V to the field. Then the function defined by B(x, y) = T(x)T(y) is a symmetric bilinear form. Let V be the vector space of continuous single-variable real functions. For one can define . By the properties of definite integrals, this defines a symmetric bilinear form on V. This is an example of a symmetric bilinear form which is not associated to any symmetric matrix (since the vector space is infinite-dimensional).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.