HeptagoneUn heptagone est un polygone à sept sommets, donc sept côtés et quatorze diagonales. La somme des angles internes d'un heptagone non croisé vaut . Un heptagone régulier est un heptagone dont tous les côtés sont égaux et dont tous les angles internes sont égaux. Il y en a trois : deux étoilés (les heptagrammes réguliers) et un convexe. C'est de ce dernier qu'il s'agit lorsqu'on parle de « l'heptagone régulier ». L'heptagone régulier est le plus petit des polygones réguliers non constructibles à la règle et au compas.
Ellipse de SteinerEn géométrie, l’ellipse de Steiner d'un triangle est l'unique ellipse tangente à chacun des côtés en leur milieu. Elle est nommée en référence au mathématicien suisse Jakob Steiner. Dans le cas où le triangle est équilatéral, cette ellipse est le cercle inscrit. Comme tout autre triangle est l'image d'un triangle équilatéral par une application affine, l'image du cercle inscrit par une telle application est une ellipse qui satisfait les conditions de tangence au milieu de chaque côté.
Lemme de Gauss (polynômes)En mathématiques, le lemme de Gauss originel énonce que si un polynôme à coefficients entiers est produit de deux polynômes unitaires à coefficients rationnels, ceux-ci sont en fait nécessairement à coefficients entiers. Sa version moderne en est une double généralisation, remplaçant l'anneau des entiers par un anneau factoriel A, et stipulant que le produit de deux polynômes primitifs ( à coefficients premiers entre eux) est primitif. Elle permet de démontrer la factorialité de l'anneau A[X].
Fonction cubiquevignette|Courbe représentative de la fonction cubique f(x) = (x3 + 3x2 − 6x − 8)/4, qui a 3 racines réelles (où la courbe croise l'axe horizontal — où y = 0) et deux points critiques. En mathématiques, une fonction cubique est une fonction de la forme où a est non nul. L'équation f(x) = 0 est alors une équation cubique. Les solutions de cette équation polynomiale sont appelées zéros de la fonction polynomiale f. vignette|Les racines, les points stationnaires, point d'inflexion et la concavité d'un polynôme cubique (ligne noire) et ses dérivées première et seconde (rouge et bleu).
Fonction algébriqueEn mathématiques, une fonction algébrique d'indéterminées est une fonction F qui satisfait l'équation non triviale où P est un polynôme à n + 1 variables sur un corps commutatif K. En cela, F est une fonction implicite qui résout une équation algébrique. Un exemple simple serait La classe des fonctions algébriques contient toutes les fonctions rationnelles, mais est plus grande. Du point de vue de l'algèbre générale, il s'agit, pour tout ensemble fixé d'indéterminées, de la clôture algébrique du corps des fonctions rationnelles.
Division d'un polynômeEn algèbre, l'anneau K[X] des polynômes à une indéterminée X et à coefficients dans un corps commutatif K, comme celui des nombres rationnels, réels ou complexes, dispose d'une division euclidienne, qui ressemble formellement à celle des nombres entiers. Si A et B sont deux polynômes de K[X], avec B non nul, il existe un unique couple (Q, R) de polynômes de K[X] tel que : Ici l'expression deg S, si S désigne un polynôme, signifie le degré de S.
Théorie des équations (histoire des sciences)thumb|upright|Évariste Galois offre une condition nécessaire et suffisante à la résolution d'une équation polynomiale par l’algèbre. Il répond ainsi à une question centrale de la théorie, ouverte depuis des millénaires. Sa méthode fournit des résultats novateurs, à l’origine de nouvelles branches de l’algèbre, qui dépassent le cadre de la théorie des équations. La théorie des équations est un ensemble de travaux ayant pour objectif premier la résolution d’équations polynomiales ou équivalentes.