Toroidal polyhedronIn geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a g-holed torus), having a topological genus (g) of 1 or greater. Notable examples include the Császár and Szilassi polyhedra. Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and at each vertex the edges and faces that meet at the vertex should be linked together in a single cycle of alternating edges and faces, the link of the vertex.
Dodécaèdre adouciLe dodécaèdre adouci ou icosidodécaèdre adouci est un solide d'Archimède. Le dodécaèdre possède 92 faces dont 12 sont des pentagones et les 80 autres sont des triangles équilatéraux. Il possède aussi 150 arêtes et 60 sommets. Il a deux formes distinctes, qui sont les images dans un miroir (ou énantiomorphes) l'une de l'autre. Le dodécaèdre peut être engendré en prenant les douze faces pentagonales du dodécaèdre, en les tirant de telle façon qu'aucune ne se touchent, puis en leur donnant toutes une petite rotation de leurs centres (toutes en sens horaire (Sh) ou toutes en sens anti-horaire (Sah)) jusqu'à ce que l'espace entre elles puisse être rempli par des triangles équilatéraux.
Dodécaèdre tronquéthumb|Patron (géométrie) En géométrie, le dodécaèdre tronqué est un solide d'Archimède. Il possède 12 faces décagonales régulières, 20 faces triangulaires régulières, 60 sommets et 90 arêtes. Ce polyèdre peut être formé à partir d'un dodécaèdre par troncature des coins, donc les faces pentagonales deviennent des décagones et les coins deviennent des triangles. Les coordonnées cartésiennes suivantes définissent les sommets d'un dodécaèdre tronqué centré à l'origine : où est le nombre d'or.
Gyrobicoupole octogonale allongéeEn géométrie, la gyrobicoupole octogonale allongée est un des 92 solides de Johnson, nommés et décrits par Norman Johnson en 1966 (ce solide est noté J37 dans sa classification). Comme son nom l'indique, il peut être construit en allongeant une gyrobicoupole octogonale (J29) et en insérant un prisme octogonal entre ses deux moitiés. Le solide résultant est localement de sommet régulier — l'arrangement des quatre faces incidentes sur un sommet quelconque est le même pour tous les sommets; ceci est unique parmi les solides de Johnson.
BitruncationIn geometry, a bitruncation is an operation on regular polytopes. It represents a truncation beyond rectification. The original edges are lost completely and the original faces remain as smaller copies of themselves. Bitruncated regular polytopes can be represented by an extended Schläfli symbol notation t_1,2{p,q,...} or 2t{p,q,...}. For regular polyhedra (i.e. regular 3-polytopes), a bitruncated form is the truncated dual. For example, a bitruncated cube is a truncated octahedron.
OmnitruncationIn geometry, an omnitruncation of a convex polytope is a simple polytope of the same dimension, having a vertex for each flag of the original polytope and a facet for each face of any dimension of the original polytope. Omnitruncation is the dual operation to barycentric subdivision. Because the barycentric subdivision of any polytope can be realized as another polytope, the same is true for the omnitruncation of any polytope.
TriakioctaèdreUn triakioctaèdre est un polyèdre dual d'un solide d'Archimède, ou un solide de Catalan. Son dual est le cube tronqué. Il peut être vu comme un octaèdre auquel on a ajouté des pyramides triangulaires sur chaque face. Cette interprétation est exprimée dans le nom. Ce polyèdre convexe est topologiquement équivalent à l'octangle étoilé concave. Ils ont la même connectivité de faces, mais les sommets sont à des distances relatives différentes du centre. Un triakioctaèdre est un élément vital dans l'univers du roman de Hugh Cook The Wishstone and the Wonderworkers.
BicoupoleEn géométrie, une bicoupole est un solide formé en connectant deux coupoles par leurs bases. Il existe deux classes de bicoupoles parce que chaque moitié de coupole est bordée par une alternance de triangles et de carrés. Si les faces identiques sont placées ensemble, le résultat est une orthobicoupole. Si les faces sont différentes, c'est une gyrobicoupole. Les coupoles et les bicoupoles existent en tant qu'ensembles infinis de polyèdres, comme les pyramides, les bipyramides, les prismes, les antiprismes et les trapèzoèdres.
HexakioctaèdreUn hexakioctaèdre est un solide de Catalan et le dual d'un solide d'Archimède, le grand rhombicuboctaèdre. Comme tel, il est de faces uniformes mais avec des faces polygonales irrégulières. Il ressemble un peu à un dodécaèdre rhombique gonflé : si on remplace chaque face d'un dodécaèdre rhombique avec un sommet unique et quatre triangles d'une manière régulière, on a pour résultat un hexakioctaèdre. L'hexaki icosaèdre Robert Williams, The Geometrical Foundation of Natural Structure: A Source Book of Design, 1979, Disdyakis Dodecahedron - MathWorld.