Archimedean graphIn the mathematical field of graph theory, an Archimedean graph is a graph that forms the skeleton of one of the Archimedean solids. There are 13 Archimedean graphs, and all of them are regular, polyhedral (and therefore by necessity also 3-vertex-connected planar graphs), and also Hamiltonian graphs. Along with the 13, the set of infinite prism graphs and antiprism graphs can also be considered Archimedean graphs.
HexagoneUn hexagone, du grec et , est un polygone à six sommets et six côtés. Un hexagone peut être régulier ou irrégulier. Un hexagone régulier est un hexagone convexe dont les six côtés ont tous la même longueur. Les angles internes d'un hexagone régulier sont tous de 120°. Comme les carrés et les triangles équilatéraux, les hexagones réguliers permettent un pavage régulier du plan. Les pavages carrés et hexagonaux sont notamment utilisés pour réaliser des dallages.
AntiprismeUn antiprisme à n faces est un polyèdre composé de deux copies d'un certain polygone particulier à n côtés, connecté par une bande de triangles alternés. Les antiprismes sont une sous-classe des prismatoïdes. Les antiprismes sont similaires aux prismes excepté le fait que les bases sont tournées relativement l'une à l'autre, et que les faces des côtés sont des triangles, plutôt que des quadrilatères : les sommets sont symétriquement alternés. Dans le cas d'une base régulière à n côtés, on considère généralement le cas où sa copie est tournée d'un angle de 180°/n.
Petit rhombicuboctaèdrethumb|180px|La première version imprimée d'un petit rhombicuboctaèdre, par Léonard de Vinci qui apparait dans la Divine Proportion. thumb|180px|Patron.|alt= Le petit rhombicuboctaèdre est un solide d'Archimède avec huit faces triangulaires et dix-huit faces carrées. Il possède 24 sommets identiques, avec un triangle et trois carrés s'y rencontrant. Le polyèdre possède une symétrie octaédrique, comme le cube et l'octaèdre. Son dual est appelé l'icositétraèdre trapézoïdal, bien que ses faces ne soient pas réellement de vrais trapèzes.
Cuboctaèdre tronquéthumb|Patron (géométrie) Le grand rhombicuboctaèdre est un solide d'Archimède. Il possède 12 faces carrées régulières, 8 faces hexagonales régulières et 6 faces octogonales régulières. Ainsi que 48 sommets et 72 arêtes. Puisque chacune de ses faces possède un centre de symétrie (ou de manière équivalente, une rotation à 180°), le cuboctaèdre tronqué est un zonoèdre (à neuf générateurs). On peut rencontrer d'autres noms tels que : Grand cuboctaèdre Cuboctaèdre rhombitronqué Cuboctaèdre omnitronqué Le nom cuboctaèdre tronqué, donné à l'origine par Johannes Kepler est un peu inexact.
Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
Triacontaèdre rhombiqueEn géométrie, le triacontaèdre rhombique est un polyèdre convexe avec 30 faces identiques en forme de losange (rhombe). Solide de Catalan, il est le dual de l'icosidodécaèdre (solide d'Archimède), zonoèdre, il est également un des neuf polyèdres convexes isotoxaux, les autres étant les cinq solides de Platon, le cuboctaèdre, l'icosidodécaèdre, et le dodécaèdre rhombique. Le rapport de la grande diagonale sur la petite diagonale de chaque face est exactement égal au nombre d'or, φ, c’est-à-dire que les angles aigus sur chaque face mesurent 2 tan(1/φ) = tan(2), ou approximativement 63,43°.
Icosidodécaèdre tronquéthumb|Patron (géométrie) L'icosidodécaèdre tronqué est un solide d'Archimède. Il possède 30 faces carrées régulières, 20 faces hexagonales régulières, 12 faces décagonales régulières, 120 sommets et 180 arêtes. Puisque chacune des faces possède un centre de symétrie, le grand rhombicosidodécaèdre est un zonoèdre (à quinze générateurs). Son dual est l'hexaki-icosaèdre, solide de Catalan. D'autres noms incluent : grand rhombicosidodécaèdre ; icosidodécaèdre rhombitronqué ; icosidodécaèdre .
Cantellation (geometry)In geometry, a cantellation is a 2nd-order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tilings and honeycombs. Cantellating a polyhedron is also rectifying its rectification. Cantellation (for polyhedra and tilings) is also called expansion by Alicia Boole Stott: it corresponds to moving the faces of the regular form away from the center, and filling in a new face in the gap for each opened edge and for each opened vertex.
Polyèdre semi-réguliervignette|Le cuboctaèdre, un des 13 solides d'Archimède. Un polyèdre est dit semi-régulier si ses faces sont des polygones réguliers, et si son groupe de symétrie est transitif sur ses sommets. Ou au moins, c'est ce qui découle de la définition de 1900 de Gosset sur le polytope semi-régulier le plus général. Ces polyèdres incluent : Les treize solides d'Archimède. La série infinie des prismes convexes. La série infinie des antiprismes convexes (leur nature semi-régulière fut observée en premier par Kepler).