Concepts associés (10)
Théorie de Ramsey
En mathématiques, et plus particulièrement en combinatoire, la théorie de Ramsey, nommée d'après Frank Ramsey, tente typiquement de répondre à des questions de la forme : « combien d'éléments d'une certaine structure doivent être considérés pour qu'une propriété particulière se vérifie ? » Le premier exemple de résultat de cette forme est le principe des tiroirs, énoncé par Dirichlet en 1834. Supposons, par exemple, que n chaussettes soient rangées dans m tiroirs.
Graphe sans triangle
En théorie des graphes, un graphe sans triangle est un graphe qui ne possède pas de triplet d'arêtes formant un triangle. Le théorème de Mantel, cas particulier du théorème de Turán, est : La famille des graphes sans triangle, contient notamment les graphes acycliques et est contenue dans les graphes sans diamant. Les graphes sans triangle peuvent être reconnus en temps , où est le nombre d'arêtes. De façon plus générale, on peut reconnaître les graphes n'ayant pas de cycles d'une certaine longueur (fixé dans l'algorithme), en temps (avec le nombre de sommets) ou en temps .
Théorème des amis et des étrangers
droite|cadre| Les 78 graphes possibles amis-étrangers avec 6 nœuds. Pour chaque graphe, les nœuds rouge/bleu montrent un exemple de triplet d'amis ou d'inconnus mutuels. Le théorème des amis et des étrangers ou théorème des amis et des inconnus est un théorème dans le domaine des mathématiques appelé théorie de Ramsey et est un cas particulier du théorème de Ramsey. Supposons qu'une fête comporte six invités. Considérons deux d'entre eux.
Coloration de graphe
thumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Théorie des graphes extrémaux
En théorie des graphes, un graphe extrémal (anglais : extremal graph) par rapport à une propriété est un graphe tel que l'ajout de n'importe quelle arête amène le graphe à vérifier la propriété . L'étude des graphes extrémaux se décompose en deux sujets : la recherche de bornes inférieures sur le nombre d'arêtes nécessaires à assurer la propriété (voire sur d'autres paramètres comme le degré minimum) et la caractérisation des graphes extrémaux proprement dits. L'étude des graphes extrémaux est une branche de l'étude combinatoire des graphes.
Lexique de la théorie des graphes
NOTOC Acyclique graphe ne contenant pas de cycle. Adjacence une liste d'adjacence est une structure de données constituée d'un tableau dont le -ème élément correspond à la liste des voisins du -ème sommet. Adjacence une matrice d'adjacence est une matrice carrée usuellement notée , de dimensions , dont chaque élément est égal au nombre d'arêtes incidentes (ayant pour extrémités) aux sommets d'indices et (pour un graphe simple non pondéré, ). Dans le cas d'un graphe pondéré, chaque élément est égal à la somme du poids des arêtes incidentes.
Frank Ramsey
Frank Plumpton Ramsey ( - ) est un mathématicien, économiste et logicien britannique. En économie, il est célèbre pour être l'auteur du modèle de Ramsey et la règle de Ramsey. Ramsey naît à Cambridge où son père est alors président du Magdalene College. Sa mère, Agnès Ramsey, a étudié l'histoire à Oxford. Il poursuit ses études au prestigieux Winchester College, avant de revenir à l'université de Cambridge pour étudier les mathématiques au Trinity College. Il obtient son diplôme en tant que senior wrangler (premier de l'examen final de mathématiques).
Claw-free graph
In graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph. A claw is another name for the complete bipartite graph K1,3 (that is, a star graph comprising three edges, three leaves, and a central vertex). A claw-free graph is a graph in which no induced subgraph is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the neighborhood of any vertex is the complement of a triangle-free graph.
Stable (théorie des graphes)
thumb|280px|L'ensemble des sommets en bleu dans ce graphe est un stable maximal du graphe. En théorie des graphes, un stable – appelé aussi ensemble indépendant ou independent set en anglais – est un ensemble de sommets deux à deux non adjacents. La taille d'un stable est égale au nombre de sommets qu'il contient. La taille maximum d'un stable d'un graphe, noté I(G), est un invariant du graphe. Il peut être relié à d'autres invariants, par exemple à la taille de l'ensemble dominant maximum, noté dom(G).
Combinatoire
En mathématiques, la combinatoire, appelée aussi analyse combinatoire, étudie les configurations de collections finies d'objets ou les combinaisons d'ensembles finis, et les dénombrements. La combinatoire est en fait présente dans toute l'antiquité en Inde et en Chine. Donald Knuth, dans le volume 4A « Combinatorial Algorithms » de The Art of Computer Programming parle de la génération de n-uplets ; il dit que la génération de motifs combinatoires «a commencé alors que la civilisation elle-même prenait forme» (« began as civilization itself was taking shape»).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.