Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Notation positionnelleLa notation positionnelle est un procédé d'écriture des nombres, dans lequel chaque position d'un chiffre ou symbole est reliée à la position voisine par un multiplicateur, appelé base du système de numération. Chaque position peut être renseignée par un symbole (notation sans base auxiliaire) ou par un nombre fini de symboles (notation avec base auxiliaire). La valeur d'une position est celle du symbole de position ou celle de la précédente position apparente multipliée par la base.
Ordre lexicographiqueEn mathématiques, un ordre lexicographique est un ordre que l'on définit sur les suites finies d'éléments d'un ensemble ordonné (ou, de façon équivalente, les mots construits sur un ensemble ordonné). Sa définition est une généralisation de l'ordre du dictionnaire : l'ensemble ordonné est l'alphabet, les mots sont bien des suites finies de lettres de l'alphabet. La principale propriété de l'ordre lexicographique est de conserver la totalité de l'ordre initial.
Transfer principleIn model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the first-order language of fields that is true for the complex numbers is also true for any algebraically closed field of characteristic 0. An incipient form of a transfer principle was described by Leibniz under the name of "the Law of Continuity".
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Completeness of the real numbersCompleteness is a property of the real numbers that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the real number line. This contrasts with the rational numbers, whose corresponding number line has a "gap" at each irrational value. In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number.
Développement décimalEn mathématiques, le développement décimal est une façon d'écrire des nombres réels positifs à l'aide des puissances de dix (d'exposant positif ou négatif). Lorsque les nombres sont des entiers naturels, le développement décimal correspond à l'écriture en base dix. Lorsqu'ils sont décimaux, on obtient un développement décimal limité. Lorsqu'ils sont rationnels, on obtient soit, encore, un développement décimal limité, soit un développement décimal illimité, mais alors nécessairement périodique.
Système décimalLe système décimal est un système de numération utilisant la base dix. Dans ce système, les puissances de dix et leurs multiples bénéficient d'une représentation privilégiée. Le système décimal est largement le plus répandu. Ainsi sont constituées, par exemple, les numérations : Les peuples ayant une base de numération décimale ont employé, au cours du temps, des techniques variées pour représenter les nombres. En voici quelques exemples. Avec des chiffres pour un, dix, cent, mille, etc.
Série géométriquethumb|Preuve sans mots de l'égalité1/2 + 1/4 + 1/8 + 1/16 + ⋯ = 1 thumb|Illustration de l'égalité 1/4 + 1/16 + 1/64 + 1/256 + ⋯ = 1/3 :chacun des carrés violets mesure 1/4 de la surface du grand carré le plus proche (1/2× = 1/4, 1/4×1/4 = 1/16, etc.). Par ailleurs, la somme des aires des carrés violets est égale à un tiers de la superficie du grand carré. En mathématiques, la série géométrique est l'un des exemples de série numérique les plus simples.
Séparateur décimal et séparateur de milliersUn séparateur décimal est un symbole utilisé pour partager la partie décimale de la partie entière d'un nombre décimal. Ce symbole dépend des conventions régionales du système de numération ; communément, il est représenté par un point dans les systèmes anglo-saxons et par une virgule dans les autres systèmes. Le séparateur de milliers est lui utilisé pour faciliter la lecture des grands nombres en regroupant par ordre de mille. Au Moyen Âge, avant l'apparition de l'imprimerie, les mathématiciens utilisaient une barre (« ̄ ») pour surligner la partie entière d'un nombre.