La notation positionnelle est un procédé d'écriture des nombres, dans lequel chaque position d'un chiffre ou symbole est reliée à la position voisine par un multiplicateur, appelé base du système de numération. Chaque position peut être renseignée par un symbole (notation sans base auxiliaire) ou par un nombre fini de symboles (notation avec base auxiliaire). La valeur d'une position est celle du symbole de position ou celle de la précédente position apparente multipliée par la base. Le nombre de symboles nécessaires est au moins égal à la base, ou à la plus grande base auxiliaire utilisée.
Le système décimal usuel utilise dix symboles, plus les symboles pour les nombres signés et les nombres à virgule, tandis que le système sexagésimal babylonien se sert d'un système décimal auxiliaire pour chaque position.
Plusieurs notations positionnelles, dont certaines hybrides (positionnelles et additives) permettent de représenter les nombres. Voici différentes manières d'écrire le nombre 9018 dans quelques-uns de ces systèmes.
Les notations hybrides utilisent des symboles représentant les puissances de la base, comme dans les numérations chinoise et japonaise. Ainsi, 十 = 101, 百 = 102, 千 = 103, 万 = 104 dans le système japonais. Ces numérations utilisent, comme pour les puissances de la base, des symboles représentant les sous-puissances de la base. Ainsi, 割 = 10-1, 分 = 10-2, 厘 = 10-3, 毛 = 10-4 dans le système japonais.
Exemple
9018 s'écrit 九千十八 avec le système utilisé pour la numération japonaise (décimale), soit 9 × 1000 + [1×]10 + 8.
9018 s'écrit 九千 零十八 avec le système utilisé pour la numération chinoise (décimale), soit 9 × 1000 + 0 [× 100] + [1×]10 + 8.
Pour la numération babylonienne, à caractère sexagésimale, les nombres étaient formés de manière additive jusqu'à 60, les valeurs ainsi obtenues étant combinées selon le principe positionnel.
Exemple
9018 s'écrit avec le système utilisé pour la numération babylonienne (sexagésimale), soit 2[×3600] + 30[×60] + 10 + 8, ou 2,30,18 avec la virgule comme séparateur de positions.