Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Variété complexeLes variétés complexes ou plus généralement les sont les objets d'étude de la géométrie analytique complexe. Une variété complexe de dimension n est un espace topologique obtenu par recollement d'ouverts de Cn selon des biholomorphismes, c'est-à-dire des bijections holomorphes. Plus précisément, une variété complexe de dimension n est un espace topologique dénombrable à l'infini (c'est-à-dire localement compact et σ-compact) possédant un atlas de cartes sur Cn, tel que les applications de changement de cartes soient des biholomorphismes.
Faisceau (mathématiques)En mathématiques, un faisceau est un outil permettant de suivre systématiquement des données définies localement et rattachées aux ouverts d'un espace topologique. Les données peuvent être restreintes à des ouverts plus petits, et les données correspondantes à un ouvert sont équivalentes à l'ensemble des données compatibles correspondantes aux ouverts plus petits couvrant l'ouvert d'origine. Par exemple, de telles données peuvent consister en des anneaux de fonctions réelles continues ou lisses définies sur chaque ouvert.
Variété symplectiqueEn mathématiques, une variété symplectique est une variété différentielle munie d'une forme différentielle de degré 2 fermée et non dégénérée, appelée forme symplectique. L'étude des variétés symplectiques relève de la géométrie symplectique. Les variétés symplectiques apparaissent dans les reformulations analytiques abstraites de la mécanique classique utilisant la notion de fibré cotangent d'une variété, notamment dans la reformulation hamiltonnienne, où les configurations d'un système forment une variété dont le fibré cotangent décrit l'espace des phases du système.
Linear complex structureIn mathematics, a complex structure on a real vector space V is an automorphism of V that squares to the minus identity, −I. Such a structure on V allows one to define multiplication by complex scalars in a canonical fashion so as to regard V as a complex vector space. Every complex vector space can be equipped with a compatible complex structure, however, there is in general no canonical such structure. Complex structures have applications in representation theory as well as in complex geometry where they play an essential role in the definition of almost complex manifolds, by contrast to complex manifolds.
Complex analytic varietyIn mathematics, and in particular differential geometry and complex geometry, a complex analytic variety or complex analytic space is a generalization of a complex manifold which allows the presence of singularities. Complex analytic varieties are locally ringed spaces which are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions. Denote the constant sheaf on a topological space with value by .
Conjecture de HodgeLa conjecture de Hodge est une des grandes conjectures de la géométrie algébrique. Elle établit un lien entre la topologie algébrique d'une variété algébrique complexe non singulière et sa géométrie décrite par des équations polynomiales qui définissent des sous-variétés. Elle provient d'un résultat du mathématicien W. V. D. Hodge qui, entre 1930 et 1940, a enrichi la description de la cohomologie de De Rham afin d'y inclure des structures présentes dans le cas des variétés algébriques (qui peuvent s'étendre à d'autres cas).
Ringed spaceIn mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of rings called a structure sheaf. It is an abstraction of the concept of the rings of continuous (scalar-valued) functions on open subsets. Among ringed spaces, especially important and prominent is a locally ringed space: a ringed space in which the analogy between the stalk at a point and the ring of germs of functions at a point is valid.
Problèmes du prix du millénaireLes problèmes du prix du millénaire sont un ensemble de sept défis mathématiques réputés insurmontables, posés par l'Institut de mathématiques Clay en . La résolution de chacun des problèmes est dotée d'un prix d'un million de dollars américains offert par l'institut Clay. En , six des sept problèmes demeurent non résolus. Chacun des défis consiste à : soit démontrer, soit infirmer, une hypothèse ou une conjecture qui n'a été ni confirmée ni rejetée faute d'une démonstration mathématique suffisamment rigoureuse ; soit définir et expliciter l'ensemble des solutions de certaines équations.
Upper half-planeIn mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is defined similarly, by requiring that be negative instead. Each is an example of two-dimensional half-space. The affine transformations of the upper half-plane include shifts , , and dilations , . Proposition: Let and be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes to . Proof: First shift the center of to . Then take and dilate.