Multiplicative group of integers modulo nIn modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n.
Nombre de Fermatthumb|Le mathématicien français Pierre de Fermat (1601-1665) étudia les propriétés des nombres portant maintenant son nom. Un nombre de Fermat est un nombre qui peut s'écrire sous la forme 22n + 1, avec n entier naturel. Le n-ième nombre de Fermat, 22n + 1, est noté Fn. Ces nombres doivent leur nom à Pierre de Fermat, qui émit la conjecture que tous ces nombres étaient premiers. Cette conjecture se révéla fausse, F5 étant composé, de même que tous les suivants jusqu'à F32.
Résidu quadratiqueEn mathématiques, plus précisément en arithmétique modulaire, un entier naturel q est un résidu quadratique modulo n s'il possède une racine carrée en arithmétique modulaire de module n. Autrement dit, q est un résidu quadratique modulo n s'il existe un entier x tel que : Dans le cas contraire, on dit que q est un non-résidu quadratique modulo n Par exemple : modulo 4, les résidus quadratiques sont les entiers congrus à 2 ≡ 0 = 0 ou à (±1) = 1.
Ordre multiplicatifEn mathématiques et plus précisément en arithmétique modulaire, l'ordre multiplicatif, modulo un entier naturel n, d'un entier relatif a premier à n, est le plus petit entier k > 0 tel que L'ordre de a modulo n est écrit parfois ordn(a). Par exemple, ord7(4) = 3 car 43 ≡ 1 (mod 7), tandis que 42 ≡ 2 (mod 7). De façon équivalente, l'ordre multiplicatif de a modulo n est l'ordre du résidu de a modulo n, dans le groupe multiplicatif U(n) des unités de l'anneau Z/nZ.
Théorème d'Euler (arithmétique)vignette|Leonhard Euler (1753) En mathématiques, le théorème d'Euler ou d'Euler-Fermat en arithmétique modulaire, publié en 1761 par le mathématicien suisse Leonhard Euler, s'énonce ainsi : Ce théorème est une généralisation du petit théorème de Fermat qui, lui, ne traite que le cas où n est un nombre premier. Il se démontre en remarquant que l'exposant λ(n) (appelé l'indicatrice de Carmichael de n) du groupe (Z/nZ) des inversibles de l'anneau Z/nZ est un diviseur de l'ordre φ(n) de ce groupe (cette propriété, commune à tous les groupes finis, se déduit du théorème de Lagrange sur les groupes).
Partie génératrice d'un groupeEn théorie des groupes, une partie génératrice d'un groupe est une partie A de ce groupe telle que tout élément du groupe s'écrit comme produit d'un nombre fini d'éléments de A et de leurs inverses. Un groupe est dit de type fini lorsqu'il admet une partie génératrice finie. Un groupe engendré par un seul élément est isomorphe soit au groupe additif des entiers relatifs (Z, +), soit à un groupe additif de classes modulo n (Z/nZ, +) ; on dit que c'est un groupe monogène.
Théorème de WilsonEn mathématiques, plus précisément en arithmétique élémentaire, le théorème de Wilson énonce qu'un entier p plus grand que 1 est premier si et seulement si la factorielle de p – 1 est congrue à –1 modulo p. Cette caractérisation des nombres premiers est assez anecdotique et ne constitue pas un test de primalité efficace. Son principal intérêt réside dans son histoire et dans la relative simplicité de son énoncé et de ses démonstrations. Ici, le symbole « ! » désigne la fonction factorielle et le symbole « .
Logarithme discretLe logarithme discret est un objet mathématique utilisé en cryptologie. C'est l'analogue du logarithme réel qui est la réciproque de l'exponentielle, mais dans un groupe cyclique G fini. Le logarithme discret est utilisé pour la cryptographie à clé publique, typiquement dans l'échange de clés Diffie-Hellman et le chiffrement El Gamal.
Test de primalitévignette|Le 39e nombre premier de Mersenne découvert à ce jour pour un article sur la primalité Un test de primalité est un algorithme permettant de savoir si un nombre entier est premier. Le test le plus simple est celui des divisions successives : pour tester N, on vérifie s’il est divisible par l’un des entiers compris au sens large entre 2 et N-1. Si la réponse est négative, alors N est premier, sinon il est composé.
Unit (ring theory)In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u. The set of units of R forms a group R^× under multiplication, called the group of units or unit group of R. Other notations for the unit group are R∗, U(R), and E(R) (from the German term Einheit).