Concepts associés (49)
4-polytope uniforme
thumb|upright=1.5|alt=Représentation du 120-cellules rectifié selon son diagramme de Schlegel|Diagramme de Schlegel du 120-cellules rectifié. Un 4-polytope uniforme est, en géométrie, un 4-polytope isogonal dont les cellules sont des polyèdres uniformes. Il s'agit de l'équivalent de ces derniers en dimension 4.
Face (géométrie)
vignette|Un cube : les surfaces en rouge sont les faces du cube. Chaque sommet est entouré par trois faces. En géométrie, les faces d'un polyèdre sont les polygones qui le bordent. Par exemple, un cube possède six faces qui sont des carrés. Le suffixe èdre (dans polyèdre) est dérivé du grec hedra, qui signifie face. Par extension, les faces d'un polytope de dimension n sont tous les polytopes de dimension strictement inférieure à n qui le bordent (et pas seulement ceux de dimension n-1).
Duoprisme
En géométrie, un duoprisme est un polytope obtenu par le produit cartésien de deux polytopes à deux dimensions ou plus (ce qui exclut les hyperprismes qui sont obtenus par produit cartésien d'un polytope et d'un segment). Le produit cartésien d'un n-polytope et d'un m-polytope est un n+m polytope (avec m et n supérieurs ou égaux à deux). Les duoprismes de dimension la plus petite sont donc de dimension 4 (2 + 2 = 4 polygone x polygone = polychore). Regular Polytopes, H. S. M. Coxeter, Dover Publications, Inc.
5-cube
thumb|Graphe d'un 5-cube. En cinq dimensions géométriques, un 5-cube est un nom pour un hypercube de cinq dimensions avec 32 sommets, 80 arêtes, 80 faces carrées, 40 cellules cubiques et 10 4-faces tesseracts. Il est représenté par le symbole de Schläfli {4,3,3,3}, réalisé sous la forme 3 tesseracts {4,3,3} autour de chaque arête cubique {4,3}. Il peut être appelé un penteract, ou encore un , étant un construit à partir de 10 facettes régulières. Il fait partie d'une famille infinie d'hypercubes.
5-orthoplex
In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regular with Schläfli symbol {33,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,31,1} or Coxeter symbol 211. It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 5-hypercube or 5-cube.
Grand icosaèdre
En géométrie, le grand icosaèdre est un solide de Kepler-Poinsot. C'est un des quatre polyèdres réguliers non convexes. Il est composé de vingt faces triangulaires équilatérales, cinq triangles se rencontrant à chaque sommet dans une suite pentagrammique. Les douze sommets coïncident avec les localisations des sommets d'un icosaèdre (régulier convexe). Les 30 arêtes sont partagées avec le petit dodécaèdre étoilé. C'est aussi une stellation d'un icosaèdre (régulier convexe), compté par Wenninger comme le modèle [W41] et la et la des 59 stellations par Coxeter.
Grand dodécaèdre étoilé
En géométrie, le grand dodécaèdre étoilé est un solide de Kepler-Poinsot. C'est l'un des quatre polyèdres réguliers non convexes. Il est composé de 12 faces pentagrammiques, avec trois pentagrammes se rencontrant à chaque sommet. Les 20 sommets ont la même disposition que ceux du dodécaèdre régulier. Raser les pyramides triangulaires donne un icosaèdre régulier. Si les faces pentagrammiques sont cassées en triangles, il est relié topologiquement au triaki-icosaèdre, avec la même connectivité de faces, mais avec des faces triangulaires isocèles plus grandes.
Petit dodécaèdre étoilé
En géométrie, le petit dodécaèdre étoilé est un solide de Kepler-Poinsot. C'est un des quatre polyèdres réguliers non convexes. Il est composé de 12 faces pentagrammiques, avec cinq pentagrammes se rencontrant à chaque sommet. Les 12 sommets coïncident avec ceux d'un icosaèdre. Les 30 arêtes sont obtenues en reliant chacun des 12 sommets aux 5 sommets les plus éloignés de lui, autres que le sommet diamétralement opposé. Elles sont partagées par le grand icosaèdre.
Grand dodécaèdre
En géométrie, le grand dodécaèdre est un solide de Kepler-Poinsot. C'est un des quatre polyèdres réguliers non convexes. Il est composé de 12 faces pentagonales, avec cinq pentagones se rencontrant à chaque sommet, se coupant les uns les autres en créant un trajet pentagrammique. Les 12 sommets et les 30 arêtes sont partagées avec l'icosaèdre. Cette forme a été à la base du puzzle de type Rubik's Cube nommé l'étoile d'Alexandre. En enlevant les parties concaves, nous obtenons un icosaèdre.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.