Goursat tetrahedronIn geometry, a Goursat tetrahedron is a tetrahedral fundamental domain of a Wythoff construction. Each tetrahedral face represents a reflection hyperplane on 3-dimensional surfaces: the 3-sphere, Euclidean 3-space, and hyperbolic 3-space. Coxeter named them after Édouard Goursat who first looked into these domains. It is an extension of the theory of Schwarz triangles for Wythoff constructions on the sphere. A Goursat tetrahedron can be represented graphically by a tetrahedral graph, which is in a dual configuration of the fundamental domain tetrahedron.
Pentagonal polytopeIn geometry, a pentagonal polytope is a regular polytope in n dimensions constructed from the Hn Coxeter group. The family was named by H. S. M. Coxeter, because the two-dimensional pentagonal polytope is a pentagon. It can be named by its Schläfli symbol as {5, 3n − 2} (dodecahedral) or {3n − 2, 5} (icosahedral). The family starts as 1-polytopes and ends with n = 5 as infinite tessellations of 4-dimensional hyperbolic space. There are two types of pentagonal polytopes; they may be termed the dodecahedral and icosahedral types, by their three-dimensional members.
11-cellIn mathematics, the 11-cell is a self-dual abstract regular 4-polytope (four-dimensional polytope). Its 11 cells are hemi-icosahedral. It has 11 vertices, 55 edges and 55 faces. It has Schläfli type {3,5,3}, with 3 hemi-icosahedra (Schläfli type {3,5}) around each edge. It has symmetry order 660, computed as the product of the number of cells (11) and the symmetry of each cell (60). The symmetry structure is the abstract group projective special linear group L2(11).
Pentagrammevignette|Pentagramme dans un pentagone. Pentagramme est, à l'origine, un terme qui concerne l'écriture. Il se réfère à un caractère calligraphié composés de cinq graphèmes élémentaires. Le signe de cantillation hébraïque chalchèlèt est un pentagramme. Plus généralement, le mot pentagramme s'applique à un graphique ou un objet qui représente une figure à cinq éléments, telle une étoile à cinq branches, principalement utilisé en ésotérisme et en magie.
HypercubeUn hypercube est, en géométrie, un analogue n-dimensionnel d'un carré (n = 2) et d'un cube (n = 3). C'est une figure fermée, compacte, convexe constituée de groupes de segments parallèles opposés alignés dans chacune des dimensions de l'espace, à angle droit les uns par rapport aux autres. Un hypercube n-dimensionnel est aussi appelé un n-cube. Le terme « polytope de mesure » a aussi été utilisé (notamment par Coxeter), mais il est tombé en désuétude. Enfin, le cas particulier du 4-cube est souvent désigné par le terme de tesseract.
Vertex arrangementIn geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a square vertex arrangement is understood to mean four points in a plane, equal distance and angles from a center point. Two polytopes share the same vertex arrangement if they share the same 0-skeleton. A group of polytopes that shares a vertex arrangement is called an army. The same set of vertices can be connected by edges in different ways.
Solide de Kepler-PoinsotLes solides de Kepler-Poinsot sont les polyèdres étoilés réguliers. Chacun possède des faces qui sont des polygones convexes réguliers isométriques ou des polygones étoilés et possède le même nombre de faces se rencontrant à chaque sommet (comparer avec les solides de Platon). vignette|upright=2|Une face unique est colorée en jaune et entourée de rouge pour aider à identifier les faces. Il existe quatre solides de Kepler-Poinsot : le petit dodécaèdre étoilé le grand dodécaèdre étoilé le grand dodécaèdre le grand icosaèdre.
5-polytopeIn geometry, a five-dimensional polytope (or 5-polytope) is a polytope in five-dimensional space, bounded by (4-polytope) facets, pairs of which share a polyhedral cell. A 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces. A vertex is a point where five or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron, and a 4-face is a 4-polytope.
TesseractEn géométrie, le tesseract, aussi appelé 8-cellules ou octachore, est l'analogue du cube (tri-dimensionnel), où le mouvement le long de la quatrième dimension est souvent une représentation pour des transformations liées du cube à travers le temps. Le tesseract est au cube ce que le cube est au carré ; ou, plus formellement, le tesseract peut être décrit comme un 4-polytope régulier convexe dont les frontières sont constituées par huit cellules cubiques.
PolytopeUn polytope est un objet mathématique géométrique. Le terme de polytope a été inventé par Alicia Boole Stott, la fille du logicien George Boole. Le terme polytope admet plusieurs définitions au sein des mathématiques. Principalement car les usages diffèrent en quelques points selon les pays, mais l'usage américain ayant tendance à s'imposer, on se retrouve confronté avec des usages contradictoires au sein d'un même pays.