Extension algébriqueEn mathématiques et plus particulièrement en algèbre, une extension algébrique L sur un corps K est une extension de corps dans laquelle tous les éléments sont algébriques sur K c’est-à-dire sont racines d'un polynôme non nul à coefficients dans K. Dans le cas contraire, l'extension est dite transcendante. Cette approche permet dans un premier temps de pallier les insuffisances de certains corps, par exemple celui des nombres réels quant aux solutions des équations polynomiales.
IndéterminéeExemple de polynôme à coefficients entiers, d'indéterminée . En mathématiques, une indéterminée est le concept permettant de formaliser des objets comme les polynômes formels, les fractions rationnelles ou encore les séries formelles. On la désigne en général par la lettre majuscule X. L'indéterminée permet de définir des structures algébriques parfois plus simples que leurs équivalents en analyse. Par exemple, sur tout anneau intègre, le corps des fractions rationnelles, défini à l'aide de l'indéterminée X, diffère de la structure équivalente des fonctions rationnelles de la variable x.
Polynôme sans carréEn mathématiques, un polynôme sans carré est un polynôme défini sur un corps (commutatif), ou plus généralement sur un anneau factoriel, qui n'a pour facteur aucun carré d'un facteur non unitaire. Dans le cas des polynômes invariables sur un corps k, cela signifie que est sans carré si et seulement si pour chaque polynôme de degré positif. Dans les applications en physique et en génie, un polynôme sans carré est communément appelé un polynôme sans racines répétées.