Résumé
En mathématiques, un polynôme sans carré est un polynôme défini sur un corps (commutatif), ou plus généralement sur un anneau factoriel, qui n'a pour facteur aucun carré d'un facteur non unitaire. Dans le cas des polynômes invariables sur un corps k, cela signifie que est sans carré si et seulement si pour chaque polynôme de degré positif. Dans les applications en physique et en génie, un polynôme sans carré est communément appelé un polynôme sans racines répétées. Ces polynômes sont appelés séparables, mais sur un corps parfait, être séparable équivaut à être sans carré. Une décomposition sans carré ou une factorisation sans carré d'un polynôme est une factorisation en puissances de facteurs sans carré où ceux des qui ne sont pas égaux à 1 sont des polynômes sans carré premiers entre eux. Chaque polynôme non nul avec des coefficients dans un corps admet une factorisation sans carré, unique à produit près des facteurs par des constantes non nulles. La factorisation sans carré est beaucoup plus facile à calculer que la factorisation complète en facteurs irréductibles, et est donc souvent préférée lorsque la factorisation complète n'est pas vraiment nécessaire, comme pour la décomposition décomposition en éléments simples et l' des fractions rationnelles. La factorisation sans carré est la première étape des algorithmes de factorisation polynomiale qui sont implémentés dans les systèmes d'algèbre informatique. Par conséquent, l'algorithme de factorisation sans carré est basique en algèbre informatique. Dans le cas de polynômes en une variable sur un corps, tout facteur multiple d'un polynôme introduit un facteur commun non trivial de f et sa dérivée formelle f , donc une condition suffisante pour que f soit sans carré est que le plus grand diviseur commun de f et f soit 1. Cette condition est également nécessaire sur un corps de caractéristique 0 ou, plus généralement, sur un corps parfait, car sur un tel corps, tout polynôme irréductible est séparable, et donc premier avec sa dérivée.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.