Raisonnement déductifEn logique, la déduction est une inférence menant d'une affirmation générale à une conclusion particulière. La déduction est une opération par laquelle on établit au moyen de prémisses une conclusion qui en est la conséquence nécessaire, en vertu de règles d'inférence logiques. Ces règles sont notamment l'objet des Premiers Analytiques d'Aristote. On l'oppose généralement à l'induction, qui consiste au contraire à extraire d'un nombre fini de propositions données par l'observation, une conclusion ou un petit nombre de conclusions plus générales.
Affirmation du conséquentNOTOC L'affirmation du conséquent est un sophisme formel par lequel on considère une condition suffisante comme une condition nécessaire. On traite alors une implication logique comme si elle était une équivalence logique. En langage naturel, l'affirmation du conséquent s'exprime : Si P alors Q Q Donc, P Le conséquent Q de l'énoncé conditionnel Si P alors Q peut être réalisé même si l'antécédent P ne l'est pas. On nomme ainsi ce sophisme « affirmation du conséquent », car il consiste à affirmer que le conséquent est réalisé pour en inférer que son antécédent l'est aussi.
Syllogisme hypothétiqueEn logique classique, un syllogisme hypothétique est une règle d'inférence valide, qui prend la forme d'un syllogisme ayant une implication pour un ou deux de ses prémisses. Si je ne me réveille pas, alors je ne peux pas aller travailler. Si je ne peux pas aller travailler, alors je ne vais pas être payé. Par conséquent, si je ne me réveille pas, alors je ne vais pas être payé. En logique propositionnelle, un syllogisme hypothétique est le nom d'une règle d'inférence valide (souvent abrégé HS et parfois aussi appelé l'argument de la chaîne, la règle de la chaîne, ou le principe de transitivité de l'implication).
Implication (logique)En logique mathématique, l'implication est l'un des connecteurs binaires du langage du calcul des propositions, généralement représenté par le symbole « ⇒ » et se lisant « ... implique ... », « ... seulement si ... » ou, de façon équivalente, « si ..., alors ... » comme dans la phrase « s'il pleut, alors il y a des nuages ». L'implication admet des interprétations différentes selon les différents systèmes logiques (logique classique, modale, intuitionniste, etc.).
Règle d'inférenceDans un système logique, les régles d'inférence sont les règles qui fondent le processus de déduction, de dérivation ou de démonstration. L'application des règles sur les axiomes du système permet d'en démontrer les théorèmes. Une règle d'inférence est une fonction qui prend un -uplet de formules et rend une formule. Les formules arguments sont appelées « les prémisses » et la formule retournée est appelée la « conclusion ».
Logical formIn logic, logical form of a statement is a precisely-specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning of a logical form can be determined unambiguously from syntax alone. Logical forms are semantic, not syntactic constructs; therefore, there may be more than one string that represents the same logical form in a given language.
Modus ponensLe modus ponens, ou détachement, est une figure du raisonnement logique concernant l'implication. Elle consiste à affirmer une implication (« si A alors B ») et à poser ensuite l'antécédent (« or A ») pour en déduire le conséquent (« donc B »). Le terme modus ponens est une abréviation du latin modus ponendo ponens qui signifie « le mode qui, en posant, pose ». Il vient de ce qu'en posant (affirmant) A, on pose (affirme) B (ponendo est le gérondif du verbe ponere qui signifie poser, et ponens en est le participe présent).
Proposition contraposéeEn logique, la contraposition est un type de raisonnement consistant à affirmer l'implication « si non B alors non A » à partir de l'implication « si A alors B ». L'implication « si non B alors non A » est appelée contraposée de « si A alors B ». Par exemple, la proposition contraposée de la proposition « s'il pleut, alors le sol est mouillé » est « si le sol n'est pas mouillé, alors il ne pleut pas ». Considérons l'exemple suivant :S'il pleut, alors le sol est mouillé.
Necessity and sufficiencyIn logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q, or the falsity of Q ensures the falsity of P.) Similarly, P is sufficient for Q, because P being true always implies that Q is true, but P not being true does not always imply that Q is not true.
Indicative conditionalIn natural languages, an indicative conditional is a conditional sentence such as "If Leona is at home, she isn't in Paris", whose grammatical form restricts it to discussing what could be true. Indicatives are typically defined in opposition to counterfactual conditionals, which have extra grammatical marking which allows them to discuss eventualities which are no longer possible. Indicatives are a major topic of research in philosophy of language, philosophical logic, and linguistics.