Concepts associés (36)
Théorème isopérimétrique
En mathématiques, et plus précisément en géométrie, un théorème isopérimétrique est une généralisation des résultats plus élémentaires d'isopérimétrie montrant par exemple que le disque est, à périmètre donné, la figure ayant la plus grande aire. Les questions traitées par cette généralisation concernent les compacts d'un espace métrique muni d'une mesure. Un exemple simple est donné par les compacts d'un plan euclidien. Les compacts concernés sont ceux de mesures finies ayant une frontière aussi de mesure finie.
Variété pseudo-riemannienne
La géométrie pseudo-riemannienne est une extension de la géométrie riemannienne ; au même titre que, en algèbre bilinéaire, l'étude des formes bilinéaires symétriques généralisent les considérations sur les métriques euclidiennes. Cependant, cette géométrie présente des aspects non intuitifs des plus surprenants. Une métrique pseudo-riemannienne sur une variété différentielle M de dimension n est une famille g= de formes bilinéaires symétriques non dégénérées sur les espaces tangents de signature constante (p,q).
Enveloppe (géométrie)
En géométrie différentielle, une famille de courbes planes possède fréquemment une courbe enveloppe. Celle-ci admet deux définitions géométriques traditionnelles, presque équivalentes : l'enveloppe est une courbe tangente à chacune des courbes de la famille ; elle est le lieu des points caractéristiques, points d'intersection de deux courbes infiniment proches. De façon plus précise, l'enveloppe possède une définition analytique, c'est l'ensemble des points critiques de l'application de projection associée à la famille de courbes.
Tangential angle
In geometry, the tangential angle of a curve in the Cartesian plane, at a specific point, is the angle between the tangent line to the curve at the given point and the x-axis. (Some authors define the angle as the deviation from the direction of the curve at some fixed starting point. This is equivalent to the definition given here by the addition of a constant to the angle or by rotating the curve.) If a curve is given parametrically by (x(t), y(t)), then the tangential angle φ at t is defined (up to a multiple of 2π) by Here, the prime symbol denotes the derivative with respect to t.
Théorème de dérivation des fonctions composées
En mathématiques, dans le domaine de l'analyse, le théorème de dérivation des fonctions composées (parfois appelé règle de dérivation en chaîne ou règle de la chaîne, selon l'appellation anglaise) est une formule explicitant la dérivée d'une fonction composée pour deux fonctions dérivables. Elle permet de connaître la j-ème dérivée partielle de la i-ème application partielle de la composée de deux fonctions de plusieurs variables chacune.
Parametric surface
A parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters . Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.