Hamiltonian (control theory)The Hamiltonian is a function used to solve a problem of optimal control for a dynamical system. It can be understood as an instantaneous increment of the Lagrangian expression of the problem that is to be optimized over a certain time period. Inspired by—but distinct from—the Hamiltonian of classical mechanics, the Hamiltonian of optimal control theory was developed by Lev Pontryagin as part of his maximum principle. Pontryagin proved that a necessary condition for solving the optimal control problem is that the control should be chosen so as to optimize the Hamiltonian.
Pontryagin's maximum principlePontryagin's maximum principle is used in optimal control theory to find the best possible control for taking a dynamical system from one state to another, especially in the presence of constraints for the state or input controls. It states that it is necessary for any optimal control along with the optimal state trajectory to solve the so-called Hamiltonian system, which is a two-point boundary value problem, plus a maximum condition of the control Hamiltonian.
Costate equationThe costate equation is related to the state equation used in optimal control. It is also referred to as auxiliary, adjoint, influence, or multiplier equation. It is stated as a vector of first order differential equations where the right-hand side is the vector of partial derivatives of the negative of the Hamiltonian with respect to the state variables. The costate variables can be interpreted as Lagrange multipliers associated with the state equations.
Multiplicateur de LagrangeEn mathématiques, et plus particulièrement en analyse, la méthode des multiplicateurs de Lagrange permet de trouver les points stationnaires (maximum, minimum...) d'une fonction dérivable d'une ou plusieurs variables, sous contraintes. On cherche à trouver l'extremum, un minimum ou un maximum, d'une fonction φ de n variables à valeurs dans les nombres réels, ou encore d'un espace euclidien de dimension n, parmi les points respectant une contrainte, de type ψ(x) = 0 où ψ est une fonction du même ensemble de départ que φ.
PrixLe prix, exprimé en un montant de référence (en général monétaire), est la traduction de la compensation qu'un opérateur est disposé à remettre à un autre en contrepartie de la cession d'un bien ou un service. Le prix mesure la valeur vénale d'une transaction et en constitue l'un des éléments essentiels. Le mécanisme de formation des prix est un des concepts centraux de la microéconomie, spécialement dans le cadre de l'analyse de l'économie de marché, où les prix jouent un rôle primordial dans la recherche et la définition d'un prix dit « d'équilibre » (alors qu'ils jouent un rôle plus mineur dans une économie administrée).
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.