Cohomologie motiviqueUne cohomologie motivique est une théorie cohomologique en mathématiques dont l'existence a été conjecturée pour la première fois par Alexandre Grothendieck dans les années 1960. À l'époque, on la concevait comme construite sur les bases des sur les cycles algébriques, en géométrie algébrique. Elle puise ses fondements en théorie des catégories, ce qui permet de déduire des conséquences à partir de ces conjectures. Grothendieck et Bombieri ont démontré la profondeur de cette approche en dérivant une des conjectures de Weil de cette façon.
Chain (algebraic topology)In algebraic topology, a -chain is a formal linear combination of the -cells in a cell complex. In simplicial complexes (respectively, cubical complexes), -chains are combinations of -simplices (respectively, -cubes), but not necessarily connected. Chains are used in homology; the elements of a homology group are equivalence classes of chains. For a simplicial complex , the group of -chains of is given by: where are singular -simplices of . Note that any element in not necessary to be a connected simplicial complex.
Steenrod algebraIn algebraic topology, a Steenrod algebra was defined by to be the algebra of stable cohomology operations for mod cohomology. For a given prime number , the Steenrod algebra is the graded Hopf algebra over the field of order , consisting of all stable cohomology operations for mod cohomology. It is generated by the Steenrod squares introduced by for , and by the Steenrod reduced th powers introduced in and the Bockstein homomorphism for . The term "Steenrod algebra" is also sometimes used for the algebra of cohomology operations of a generalized cohomology theory.
Cohomologie de WeilUne cohomologie de Weil est une théorie cohomologique des variétés algébriques, à coefficients dans un corps, satisfaisant un certain jeu d'axiomes. La nécessité d'une telle théorie a été postulée par André Weil, à l'origine pour garantir une formule de Lefschetz. Weil avait suggéré que les conjectures qui portent son nom se déduiraient de l'existence d'une théorie cohomologique des variétés sur les corps finis, analogue à la théorie cohomologique à coefficients rationnels pour les variétés complexes.
Reduced homologyIn mathematics, reduced homology is a minor modification made to homology theory in algebraic topology, motivated by the intuition that all of the homology groups of a single point should be equal to zero. This modification allows more concise statements to be made (as in Alexander duality) and eliminates many exceptional cases (as in the homology groups of spheres). If P is a single-point space, then with the usual definitions the integral homology group H0(P) is isomorphic to (an infinite cyclic group), while for i ≥ 1 we have Hi(P) = {0}.
Local cohomologyIn algebraic geometry, local cohomology is an algebraic analogue of relative cohomology. Alexander Grothendieck introduced it in seminars in Harvard in 1961 written up by , and in 1961-2 at IHES written up as SGA2 - , republished as . Given a function (more generally, a section of a quasicoherent sheaf) defined on an open subset of an algebraic variety (or scheme), local cohomology measures the obstruction to extending that function to a larger domain.
TransversalitéEn algèbre linéaire et en géométrie différentielle, la propriété de transversalité est un qualificatif pour l'intersection de sous-espaces ou de sous-variétés. Elle est en quelque sorte l'opposé de la notion de tangente. Deux sous-espaces vectoriels , d'un espace vectoriel sont dits transverses quand . Cette condition peut être réécrite, le cas échéant, en termes de codimension : Deux sous-espaces affines , d'un espace affine sont dits , c'est-à-dire si Deux sous-variétés et d'une variété différentielle sont dites transverses lorsque, pour tout point de , les espaces tangents et sont transverses dans l'espace tangent , c'est-à-dire si Dans la suite, désignent les dimensions respectives de .
Classe de PontriaguineEn mathématiques, les classes de Pontriaguine sont des classes caractéristiques associées aux fibrés vectoriels réels, nommées d'après Lev Pontriaguine. Les classes de Pontriaguine appartiennent aux groupes de cohomologie de degré un multiple de quatre. Soit E un fibré vectoriel réel au-dessus de M. La k-ième classe de Pontriaguine pk(E) est définie par : pk(E) = pk(E, Z) = (−1)k c2k(E ⊗ C) ∈ H4k(M, Z), où c2k(E ⊗ C) est la 2k-ième classe de Chern du complexifié E ⊗ C = E ⊕ iE de E ; H4k(M, Z) est le 4k-ième groupe de cohomologie de M à coefficients entiers.
Koszul complexIn mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra. As a tool, its homology can be used to tell when a set of elements of a (local) ring is an M-regular sequence, and hence it can be used to prove basic facts about the depth of a module or ideal which is an algebraic notion of dimension that is related to but different from the geometric notion of Krull dimension.
Cap-produitEn mathématiques, et plus particulièrement en topologie algébrique, le cap-produit est une opération binaire qui permet d'assembler des chaînes et des cochaînes. Elle a été introduite par Eduard Čech en 1936 et indépendamment par Hassler Whitney en 1938. Soit X un espace topologique et A un anneau. Le cap-produit est une application bilinéaire définie sur les chaines et les cochaines singulières en posant avec et et où est la restriction de l'application simpliciale à la face engendrée par les vecteurs .