Homologie de HochschildL’homologie de Hochschild et la cohomologie de Hochschild sont des théories homologiques et cohomologiques définies à l'origine pour les algèbres associatives, mais qui ont été généralisées à des catégories plus générales. Elles ont été introduites par Gerhard Hochschild en 1945. La cohomologie cyclique développée par Alain Connes et Jean-Louis Loday en est une généralisation. La cohomologie de Hochschild classifie les de la structure multiplicative de l'algèbre considérée, et d'une manière générale l'homologie comme la cohomologie de Hochschild possèdent une riche structure algébrique.
Closed and exact differential formsIn mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the of d, and a closed form is in the kernel of d. For an exact form α, α = dβ for some differential form β of degree one less than that of α. The form β is called a "potential form" or "primitive" for α.
Graded-commutative ringIn algebra, a graded-commutative ring (also called a skew-commutative ring) is a graded ring that is commutative in the graded sense; that is, homogeneous elements x, y satisfy where |x | and |y | denote the degrees of x and y. A commutative (non-graded) ring, with trivial grading, is a basic example. An exterior algebra is an example of a graded-commutative ring that is not commutative in the non-graded sense. A cup product on cohomology satisfies the skew-commutative relation; hence, a cohomology ring is graded-commutative.
CodimensionLa codimension est une notion de géométrie, rencontrée en algèbre linéaire, en géométrie différentielle et en géométrie algébrique. C'est une mesure de la différence de tailles entre un espace et un sous-espace. La codimension dans un espace vectoriel E d'un sous-espace vectoriel F est la dimension de l'espace vectoriel quotient E/F : Cette codimension est aussi égale à la dimension de n'importe quel supplémentaire de F dans E car tous sont isomorphes à E/F. Il résulte de la définition que F = E si et seulement si codim(F) = 0.
Catégorie homotopique des complexes de chaînesEn algèbre homologique, la catégorie homotopique K(A) des complexes de chaînes dans une catégorie additive A est un cadre pour travailler avec des complexes de chaînes et équivalences homotopiques. Elle est un intermédiaire entre la catégorie des complexes de chaînes Kom(A) de A et la catégorie dérivée D(A) de A lorsque A est abélien ; contrairement à la première, c'est une catégorie triangulée, et contrairement à la seconde, sa construction n'exige pas que A soit abélien.
Lie algebra cohomologyIn mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by to coefficients in an arbitrary Lie module. If is a compact simply connected Lie group, then it is determined by its Lie algebra, so it should be possible to calculate its cohomology from the Lie algebra.
Homologie cellulaireEn mathématiques et plus précisément en topologie algébrique, l'homologie cellulaire est une théorie de l'homologie des CW-complexes. Elle coïncide avec leur homologie singulière et en fournit un moyen de calcul. Si X est un CW-complexe de n-squelette X, les modules d'homologie cellulaire sont définis comme les groupes d'homologie du complexe de chaînes cellulaires Le groupe est le groupe abélien libre dont les générateurs sont les n-cellules de X.
Jean LerayJean Leray, né le à Chantenay-sur-Loire (Loire-Inférieure) et mort le à La Baule, est un mathématicien français qui a travaillé à la fois sur les équations aux dérivées partielles, la mécanique des fluides et sur la topologie algébrique. Il passe sa jeunesse à Nantes et à Rennes, puis fait ses études à l'École normale supérieure et devient professeur à Nancy en 1936. Il effectue ses principaux travaux en topologie entre 1940 et 1945 alors qu'il est prisonnier de guerre en Autriche.
Classe d'EulerEn topologie algébrique, la classe d’Euler est une classe caractéristique d'un fibré vectoriel réel orienté. Elle mesure l’obstruction à trouver une section d’un fibré qui ne s’annule pas. Cette notion trouve son origine dans la théorie de l'homologie. Soit ξ un fibré vectoriel réel orienté de rang sur une variété compacte orientée de dimension . Une section générique de ξ est transverse à la section nulle. Par conséquent, le lieu de ses zéros est une sous-variété compacte sans bord orientée de dimension -, elle possède une classe d’homologie [] qui ne dépend pas du choix de la section.
Théorie de l'homotopie stableEn mathématiques, la théorie de l'homotopie stable est une partie de la théorie de l'homotopie concernée par les structures et tous les phénomènes qui subsistent après suffisamment d'applications du foncteur de suspension. Un résultat fondateur a été le théorème de suspension de Freudenthal, qui stipule que, étant donné tout espace pointé , les groupes d'homotopie se stabilisent pour suffisamment grand. En particulier, les groupes d'homotopie des sphères se stabilisent pour .